Оглавление 2.2. Расчёт основных параметров системы водоподготовки. Расчет и выбор основного 2.2.7. Расчет мощности теплообменника для нагрева и поддержания требуемой 6. Требования к готовности строительной площадки к монтажу системы водоподготовки. 14 6.1. Требования к готовности технического помещения для систем водоподготовки

Прове	ерил	Хоботов А.В			Пояснительная записка	AK	L± АДЕМІ CTI		
					бассейна	P	1	16	_
Разра	ботал	Тачекин А.И			Оборотная система водоснабжения				
Изм	Кол.у	Лист №	Подп	Дата	Бассейн переливной со встроенной	і́ гидром	ассажної	й зоной	
					ПЗ				

Утвердил

1. Общая часть

Подраздел «Оборотная система водоснабжения бассейнов» разработан на основании утвержденных технического и технологического заданий, архитектурно-планировочных решений. Проектная документация разработана в соответствии с требованиями:

- 1. СП 2.1. 3678-20 «Санитарно-эпидемиологическое требование к эксплуатации помещений, зданий, сооружений, оборудования и транспорта, а также условиям деятельности хозяйствующих субъектов, осуществляющих продажу товаров, выполнение работ или оказание услуг»
- 2. СанПиН 2.1.4.1074-01.2.1.4 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения Контроль качества»
- 3. СП 118.13330.2012 «СНиП 31-06-2009 «общественные здания и сооружения»
- 4. СП 30.13330.2012 «СНиП 2.04. 01-85 Внутренний водопровод и канализация зданий»
- 5. СП 31.13330.2012 «СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения»
- 6. СП 32.13330. 2012 «СНиП 2.04.03-85 «Канализация Наружные сети и Сооружения»
- 7. СП 59.13330. 2012 «СНиП 65-01-2001 «Доступность зданий и сооружений для маломобильных групп населения»
- 8. СП 60.13330.2012 «СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха»
- 9. Правила устройства электроустановок Издание 7
- 10. СП 310.1325800.2017 «Бассейны для плавания. Правила проектированния»
- 11. ГОСТ Р 54316-2011 «Воды минеральные природные питьевые. Общие технические условия.»
- 12. СП 77.13330.2016 Системы автоматизации
- 13. МУ 2.1.2.694-98 «Использование ультрафиолетового излучения при обеззараживании воды плавательных бассейнов.»
- 14. ГОСТ Р 50517.7.702-2013/МЭК 60364-7-702-2010 Электроустановки низковольтные. Часть 7. Требования к специальным установкам или местам их размещения. Раздел 702. Плавательные бассейны и фонтаны.
- 15. ГОСТ Р 55529-2013 Объекты спорта. Требования безопасности при проведении спортивных и физкультурных мероприятий. Методы испытаний (с Изменениями №1)
- 16. ГОСТ Р 53491.1-2009 «Бассейны. Подготовка воды. Часть 1. Общие требования»
- 17. ГОСТ Р 53491.2-2012 «Бассейны. Подготовка Воды. Часть 2 Требования безопасности и др.»
- 18. ГОСТ Р 52603-2011 «Аттракционы водные. Безопасность конструкций. Общие требования»
- 19. СП 31-113-2004 «Бассейны для плавания»

Изм	Кол.у	Лист	Подп.	Дата

2. Технология водоподготовки

По характеру водообмена бассейн запроектирован рециркуляционным. Для бассейна предусмотрена отдельная система водоподготовки. Для водоподготовки бассейна применяется технология включающая в себя следующие этапы обработки воды: коагуляция - фильтрация на осветлительных фильтрах УФ-обработка – хлорирование.

2.1. Краткое описание технологии водоподготовки

Для эффективной очистки зеркала бассейна применяется переливная система водообмена в бассейне, т.е. весь объём воды, забираемый из чаш на рециркуляцию, отводится через переливные желоба и по трубопроводам сливается в балансный резервуар (данный балансный резервуар дополнительно обеззараживается ультрафиолетовыми лампами). Переливные желоба и трубопроводы рассчитаны таким образом, что обеспечивается беспрепятственный отвод воды при максимальной загрузке бассейнов (с учетом образования волн и вытесненной воды купающимися), а также минимизация шумовых эффектов (журчания), связанных с протеканием воды по переливному желобу и трубам, трапы для отвода воды с переливного желоба дополнительно оснащаются устройствами шумоглушения.

Балансный резервуар рассчитан таким образом, что его объёма хватает на приём переливной воды и воды для промывки фильтров. Заданный уровень в балансном резервуаре поддерживается автоматически, путем добавления исходной (свежей) воды (через фильтр механической очистки. В соответствии с п.З.З СанПиН 2.1.2.1188-03 добавление свежей водопроводной составляет не менее 30 литров воды в сутки на каждого посетителя (при комбинированном методе обеззараживания УФ-хлор).

Уровень воды в балансном резервуаре контролируется аналоговыми датчиками уровня.

Подача исходной воды осуществляется задвижкой с электроприводом, оснащенным возвратным механизмом. Расход исходной воды контролируется расходомером.

Из балансного резервуара на рециркуляцию вода забирается циркуляционными насосами. Насосы изготовлены из специальных материалов, устойчивых к содержанию химических реагентов в воде. Конструкция насосов предусматривает наличие специальных сетчатых фильтров (грязеуловители), которые предотвращают попадание крупных загрязняющих веществ внутрь насосов и трубопроводов с арматурой, что может привести к сбою в работе всей системы водоподготовки.

Технологическая схема работы станции следующая.

Вся вода бассейна круглосуточно подвергается очистке и дезинфекции и полностью автоматизирована. В состав станции включены следующие основные блоки: коагуляция; фильтрование; УФ - облучение; подогрев воды; хлорирование / обеззараживание активным кислородом и контроль рН;и подпитка.

Коагуляция

Коагуляция: мелкодисперсные и коллоидные частицы при коагулирование укрупняются в хлопья и осаждаются в верхних слоях песчаной загрузки осветлительных фильтров. Коагулирование осуществляется для ускорения осветления и обесцвечивания воды.

Коагуляция, осуществляется станцией дозирования коагулянта В качестве коагулянта чаще всего примеряются коллоидные растворы (реагенты-коагулянты) трехвалентных металлов: алюминия и железа.

<u>Фильтрация</u>

Фильтрация на многослойных сорбционно-осветлительных фильтрах. Многослойный осветлительный фильтр состоит из корпуса фильтра, системы дренажей, системы управляющих вентилей и фильтрующей загрузки. Процесс фильтрации происходит сверху вниз, и вода, проходя через фильтрующий материал, очищается от загрязнений. С течением времени происходит засорение фильтрующего материала, следовательно, фильтр нужно выводить в регенерацию, промыть обратным током. После проведения обратной промывки фильтр снова готов к работе.

УФ-Установка

Применение УФ обеззараживания позволяет снизить концентрацию остаточного свободного хлора до минимальных значений 0,1–0,3 мг/л, согласно СанПиН 2.1.2.1188-03. При корректировке режима хлорирования следует приглашать специалиста. Установки УФ обеззараживания рекомендуется устанавливать до системы ввода хлора. В случае применения теплообменников для

Изм	Кол.у	Лист	Подп.	Дата	

подогрева воды рекомендуется систему УФ обеззараживания монтировать до подогрева воды, так как высокая температура обрабатываемой воды может снизить эффективность обеззараживания.

Компактность и высокий класс защиты позволяют размещать УФ установки практически в любых помещениях, а возможности удаленного контроля и мониторинга обеспечивают простую интеграцию УФ установки в систему автоматизации водоподготовки.

При размещении УФ оборудования важно исключить завоздушивание установки, соблюдать размеры зоны обслуживания (для доступа к УФ оборудованию и запорной арматуре, извлечения УФ ламп и кварцевых чехлов).

Подогрев воды.

Поддержание температуры воды в бассейне на заданном уровне. Бассейн является закрытым и работает круглогодично. Вследствие этого необходимо поддерживать необходимый микроклимат внутри помещения, необходимую температуру воздуха и воды в бассейне. Температура и влажность воздуха поддерживается при помощи климатических установок, температура воды поддерживается при помощи теплообменников, установленных в рециркуляционном контуре водоподготовки. Теплообменник предназначен для нагрева воды в чаше плавательного бассейна до +32 °C.

Хлорирование и контроль рН.

Хлорирование происходит на заключительном этапе. При Хлорирование вода приобретает бактерицидные свойства так как обеззараживающий реагент (хлорсодержащие соединения) сохраняются в воде в течении продолжительного времени

Хлорирование (химическая дезинфекция). Хлорирование воды производится путем ввода раствора гипохлорита натрия в трубопровод (подача реагента осуществляется после теплообменника). Подача дезинфицирующего вещества осуществляется автоматически станцией дозирования. Электронная контрольно-измерительная станция производит постоянный замер в воде свободного хлора, рН и окислительно-восстановительного потенциала, сравнивает полученные значения с установленными. При необходимости станция выдает сигнал на дозирование дезинфицирующего раствора или рН корректирующего реагента. Подача корректирующего реагента осуществляется автоматической станцией дозирования.

Содержание свободного хлора жестко нормируется, при совместном применении УФ облучения и хлорирования содержание свободного хлора должно быть на уровне 0,1÷0,3 мг/л (СанПин 2.1.2.1188-03, таблица № 3, примечание 2 к таблице). Оптимальная дезинфекция воды также обеспечивается заданным уровнем рН, который должен поддерживаться на уровне 7,2÷7,6.

Концентрацию свободного хлора следует поддерживать на уровне 0,1÷0,3 мг/л, а уровень связанного хлора не должен превышать 0,2 мг/л (ГОСТ Р 53491.1-2009, таблица № 2).

Расход циркуляционной воды контролируется расходомером.

На каждом этапе водоподготовки предусмотрены краны для отбора проб воды:

- на трубопроводе исходной воды;
- после циркуляционных насосов;
- на трубопроводе подачи воды после фильтров;
- на трубопроводе подачи подготовленной воды в бассейн;

Вода, прошедшая все ступени подготовки, подается обратно в чаши бассейнов через подающие форсунки, и там равномерно распределяется.

Изм	Кол.у	Лист	Подп.	Дата

2.2. Расчёт основных параметров системы водоподготовки. Расчет и выбор основного оборудования системы водоподготовки

2.2.1 Параметры бассейнов

Оздоровительный бассейн

Тип бассейна: закрытый, переливной с вертикальной циркуляцией воды

Длина бассейна	L=10,0 M
Ширина бассейна	В=3,49 м
Глубина бассейна	H=1 M - 1,8 M
Периметр	L=28,05 M
Площадь зеркала воды	A=35,87 m2
Объём бассейна	V=48,86 m3
Температура воды	T=32 °C
Пропускная способность	Бассейн частного использования

Бассейн предназначен для оздоровительного плавания.

Размещение оборудования водоподготовки предусмотрено в техническом помещении на отметке – 3,140.

2.2.2 Расчет потока рециркуляции (производительности) систем водоподготовки Плавательный бассейн

Согласно техническому заданию заказчика бассейн является плавательным и предназначен для оздоровительного плавания.

Согласно СанПин 2.1.2.1188-03 время полного водообмена должно быть не менее 6 часов при оздоровительном плавании, для достижения более эффективной работы системы фильтрации принимаем к расчету время полного водообмена не менее 4 часов, и фильтрационный (рециркуляционный) поток в этом случае рассчитывается по формуле:

$$_{B}Q=V/t$$
,

Q – рециркуляционный поток бассейна, м³/ч;

V – объем бассейна, M^3 ; V=48,86 M^3 ;

t – время полного водообмена, 4 ч.

$$Q = 48,86 / 4 = 12,2 \text{ m}^3/\text{ч}.$$

К расчету принимается значение фильтрационного потока $Q=12,2\,$ $m^3/ч$, полный водообмен будет происходить за 4 часов.

2.2.3. Подбор рециркуляционных насосов

Плавательный бассейн

В качестве циркуляционных (основных) насосов выбираем фильтрационные насосы PSH, энергосберегающий насос с предварительно-встроенным фильтром (уловителем волос) для задержания грубых примесей в воде. Выбираем схему с одним рабочим насосом и одним резервным, таким образом, чтобы во время работы насоса в номинальном режиме обеспечивалась производительность расчетной рециркуляции.

Номинальная производительность каждого насоса должна составлять не менее 12,2 m^3 /час с напором не менее 10 метров.

Основные характеристики насоса с предфильтром PSH MINI-150T:

Наименование	Значение
Мощность / Напряжение	1,1кВт / 400В
Производительность	18 м3/ч при Н=10м
Номинальный размер присоединения вход/выход	50 / 50
DN mm	
Количество, шт.	2

Данный подход предусматривает 100% резервирование по насосному оборудованию.

Изм	Кол.у	Лист	Подп.	Дата	

2.2.4. Расчёт осветлительных фильтров.

В схеме очистки осветлительные фильтры служат для извлечения из воды взвесей и коллоидов.

В качестве фильтрующего материала, загружаемого в фильтры, используется зернистый кварцевый песок фракции 0,5мм – 1мм.

Плавательный бассейн

Требуемый диаметр одного фильтра, при нескольких фильтрах, работающих параллельно, определяется по формуле

$$D = \sqrt{\frac{4 * Q}{\pi * V * n}}$$

Q– расход циркуляционной воды; Q= 18 M^3 /час,

V- скорость фильтрации воды; V= 30 м/час,

n- количество фильтров, n= 1,

D=0.87M

Согласно полученным расчётам необходимо подобрать три фильтра ближайшего значения. Выбираем фильтр Gemas 021815LLT диаметром 0,92 м.

Уточненная скорость фильтрации:

$$V = \frac{4Q}{\pi n D^2}$$

V=27.09 м/ч

Техническая характеристика сорбционно-осветлительного фильтра Gemas 021815LLT

Наименование	Значение
Диаметр	920mm
Площадь фильрации	0.66m ²
Диаметр патрубка DN	2"
Высота фильтра	1110мм
Расчетная скорость фильтрации	26,19 м/ч
Bec	50кг
Загрузка (песок)	450кг
Количество	1шт

Для регенерации фильтрующей загрузки используется комбинированный метод промывки. Первоначально производится взрыхление фильтрующего слоя чистой водой обратным током в течение 2-х минут. Затем в течение 4-ти минут производится отмывка загрузки фильтра. Перед вводом фильтра в рабочий режим для предотвращения попадания загрузки в чашу бассейна и уплотнения фильтрующего слоя дополнительно производится сброс первого фильтрата в канализацию в течение 2-х минут.

РЕСУРС МЕЖДУ ПРОМЫВКАМИ ОСВЕТЛИТЕЛЬНОГО ФИЛЬТРА ЗАВИСИТ ОТ КОЛИЧЕСТВА ПРОФИЛЬТРОВАННОЙ ВОДЫ, ОТ ВИДА И КОНЦЕНТРАЦИИ ПРИМЕСЕЙ В ОЧИЩАЕМОЙ ВОДЕ, ОТ СЕЗОННОГО ИЗМЕНЕНИЯ ЭТОГО СОДЕРЖАНИЯ И МОЖЕТ БЫТЬ УТОЧНЁН ТОЛЬКО В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ.

Изм	Кол.у	Лист	Подп.	Дата

2.2.5. Расчёт объёма воды для промывки одного осветлительного фильтра/

При остановке бассейна и промывке фильтра со скоростью 18м3/ч в течении 2 минуты взрыхление, 4 минуты обратная промывка, 2 минуты уплотнение. Расход воды составит:

Промывка осветлительных фильтров производится в ночные часы чистой водой, когда вода в системе рециркуляции прошла полный цикл обработки. Сброс воды от промывки осуществляется в канализационную сеть.

2.2.6. Определение объема балансного резервуара

Объем балансного резервуара определяется по формуле:

$$V_{6p} = V_1 + V_2 + V_3$$
,

 V_1 – объем воды, вытесненной посетителями в бассейне, (м³);

 V_2 - объем воды, вытесненной волнами в бассейне, (м³);

 V_3 – расход воды на промывку фильтра, (M^3);

$$V_1 = 0.075(A/a);$$

$$V_2 = (0,04-0,06) A;$$

А – площадь зеркала воды бассейна;

а - площадь зеркала воды на одного купающегося;

0,04-средняя высота волны в бассейне, м,;

Плавательный бассейн

$$V_1$$
=0,075*(A/a)=0,075*5=0,375 m³;
$$V_2$$
=0,04*35.87=1,43 m³;

 $V_3 = 2.4 \text{ m}^3$;

 $A - площадь зеркала воды плавательного бассейна; <math>A = 110 \text{ m}^2$;

а - площадь зеркала воды на одного купающегося; а = $A/n=110/2=55 \text{ m}^2$;

0,02 –средняя высота волны в бассейне, м, площадью более 100м²;

Объем балансного резервуара

$$V_{6p}=0,375+1,43+2,4=4,2 \text{ m3}.$$

С учетом запаса проектный объем балансного резервуара составит 6 общего объема.

Для обеззараживания балансного резервуара применяем герметичную УФ установку для обеззараживания воды в емкостях производства ООО «Промышленные системы УФобеззараживания» ОДВ-ОБ-120ГС мощностью 120вт в количестве двух штук

2.2.7. Расчет мощности теплообменника для нагрева и поддержания требуемой температуры воды в бассейне.

Принимаем для проектирования температуру воды в ванне плавательного бассейна не более $+32~^{\circ}$ С.

Для первоначального нагрева и компенсации потерь температуры воды в бассейнах в схемах водоподготовки после фильтров устанавливается оборудование нагрева воды.

Изм	Кол.у	Лист	Подп.	Дата

Мощность теплообменника вычисляется по формуле:

$$N = \frac{V * (t1 - t2) * C}{\tau} + z * A$$

$$N = ((V * (t_1 - t_2) * C) / \tau) + z * A, BT$$

V – объем воды в бассейне,

V = 48860 литров (для плавательного бассейна),

 t_1, t_2 – разность температур воды в бассейне, подлежащих выравниванию за сутки, °C;

 t_2 – необходимая температура воды в бассейне,

 $t_2 = +32$ °C (для плавательного бассейна);

 t_1 – температура воды, подаваемая из системы водоснабжения в бассейны,

 $t_1 = +15$ °С (в летнее время),

 $t_1 = +5$ °С (в зимнее время);

C = 1,163, $BT/л^{\circ}C - удельная теплоемкость воды;$

т – продолжительность первичного нагрева воды в бассейне,

т = 24 часов (для плавательного бассейна в зимний период),

т = 24 часов (для плавательного бассейна в летний период);

Z – потери тепла, в час,

Z = 292 BT / м2 (для плавательного бассейна);

А – площадь зеркала воды,

А = 35,87 м2 (для плавательного бассейна);

Плавательный бассейн

Первоначальный нагрев воды в чаше бассейна (в зимний период)

$$N = ((48860 * (32-5) * 1.163) / 24) + 292 * 35,87 = 84862 BT$$

Режим эксплуатации (поддержание температуры в чаше бассейна в зимний период)

Мощность, необходимая для поддержания температуры воды в бассейне, рассчитывается с учетом подогрева подпиточной воды.

Максимальный расход подпиточной воды в сутки для плавательного бассейна составляет:

Расход на промывку одного фильтра 2,4м3 количество фильтров 1шт итого 2,4м3 а так же потери на испарение и разбрызгивание составят 0,0064*35,87м2 = 0,23м3 Итого максимальный расход подпиточной воды составит 2,63 м³/сут (с учетом воды, необходимой для промывки фильтров и безвозвратных потерь). Догрев бассейна необходимо осуществить за один цикл водообмена 4 часа.

$$N = ((2630 * (32 - 5) * 1.163) / 4) + 292 * 35,87 = 41586 BT$$

Первоначальный нагрев воды в чаше бассейна (в летний период)

$$N = ((48860 * (32 - 15) * 1.163) / 24) + 292 * 35,87 = 61190 BT$$

Режим эксплуатации (поддержание температуры в чаше бассейна в летний период)

Мощность, необходимая для поддержания температуры воды в бассейне, рассчитывается с учетом подогрева подпиточной воды.

Расход на промывку одного фильтра 2,4м3 количество фильтров 1шт итого 2,4м3 а так же потери на испарение и разбрызгивание составят 0,0064*35,87м2 = 0,23м3 Итого максимальный расход подпиточной воды составит 2,63 м³/сут (с учетом воды, необходимой для промывки фильтров и безвозвратных потерь). Догрев бассейна необходимо осуществить за один цикл водообмена 4 часа.

$$N = ((2630 * (32 - 15) * 1.163) / 4) + 292 * 35,87 = 33939 BT$$

Изм	Кол.у	Лист	Подп.	Дата

Принимается к установке один теплообменника марки MaxDapra (мощностью 84 кВт каждый). Характеристики теплообменника MaxDapra D-HWT 65

Наименование	Значение
Длина, мм	680
Диаметр, мм	125
Мощность, кВт	84
Присоединительный размер (первичный	1 1/2"
контур)	
Присоединительный размер (вторичный контур)	2"
Максимальная температура, °С	110
Максимальное давление, бар	10
Количество, шт	1

Работа теплообменника осуществляется в автоматическом режиме.

Изм	Кол.у	Лист	Подп.	Дата

2.2.8. Дозирование коагулянта

Подача коагулянта происходит в автоматическом режиме насосом-дозатором.

Для дозирования коагулянта выбирается дозирующая станция EMEC VCLg, с техническими характеристиками:

Рабочее давление, макс, (бар)	5
Производительность дозирования, макс.,	1
(л/ч)	
Электросеть, (В/Гц)	230/50
Потребляемая мощность, (Вт)	16
Температура воды, макс.,(°С)	50
Температура воздуха, макс., (°C)	45
Габаритные размеры (длина х ширина х	107 x 210 x 115
высота), (мм)	
Вес, кг	2
Количество, шт.	1

2.2.9. Дозирование и контроль Ph / Cl

В процессе эксплуатации системы рециркуляции воды в закрытом плавательном бассейне повышение значения рН воды обусловлено несколькими причинами, две из которых являются основными:

Растущая концентрация щелочи в воде за счет образования гидроксида аммония NH₄OH (результат загрязнения воды продуктами белкового обмена человека).

Введение в обрабатываемую воду для обеззараживания дезинфицирующего раствора на основе гипохлорита натрия, содержащего в своем составе щелочь NaOH в готовом заводском продукте, с массовой концентрацией щелочи до 30 г/л.

Раскисление воды производится 38% кислотным специализированным продуктом для понижения значения pH воды до уровня 7,2 — 7,6.

Ввод дезинфицирующего раствора происходит автоматически насосом-дозатором, его расход может варьироваться в процессе эксплуатации в зависимости от показаний электронной контрольно-измерительной станции.

Для дозирования дезинфицирующего раствора принимаем дозирующую станцию контроля Ph и показателей прямого Cl. Для получения корректных показателей необходимо укомплектовать станцию насосом подачи воды на анализ (PSH MICRO-25) для обеспечения необходимого потока. А так же предусмотреть наличие фильтра (EMEC NFIL) подачи воды на измерительную ячейку (EMEC ECL6 + EPHM).

EMEC WDPHCL, с техническими характеристиками:

Рабочее давление, макс, (бар)	3
Производительность дозирования,	10
макс., (л/ч)	
Электросеть, (В/Гц)	230/50
Потребляемая мощность, (Вт)	32
Температура воды, макс.,(°С)	50
Температура воздуха, макс., (°C)	45
Габаритные размеры (длина х ширина х	213 x 97 x 191
высота), (мм)	
Вес, кг	6.5
Количество, шт.	1

Изм	Кол.у	Лист	Подп.	Дата	

2.2.11. Расчет и подбор системы УФ обеззараживания

УФ установка используется только в качестве дополнительного метода дезинфекции воды бассейна, вместе с хлорированием, с целью повысить эффективность последнего и снизить количество добавляемых хлорреагентов.

Установку УФ-обеззараживания монтируют в системе водоподготовки бассейна после этапа фильтрования, перед теплообменниками. Установки УФ-обеззараживания должны обеспечивать эффективную дозу облучения не менее 16 мДж/см2 согласно санитарным правилам и нормам [11] (пункт 3.8.2). Производительность системы УФ-обеззараживания воды должна быть равной циркуляционному расходу, так как УФ-облучению следует подвергать весь циркуляционный поток.

УФ облучение осуществляется ультрафиолетовой установкой для общественных бассейнов с лампами среднего давления Filtreau UVS0003

Прозводительность	22 куб.м/ч
Напряжение питания	220-240 вольт
Мощность UV лампы	120 BT
Доза излучения	40 мДж/кв.см
Спектр УФ излучения	254 нанометров
Максимальное рабочее давление в системе	3,0 бар
Размер подсоединения	140mm
Материал корпуса	сталь марки AISI-316
Срок службы УФ-лампы	до 12000 часов
Защита	IP 54

УФ излучение с дозой 40 мДж/см2, обеспечивает полное разрушение хлориминов.

2.3 Закладные детали чаши бассейна

Форсунка донная	Аквасектор	AC. 07.031.L	12 шт
Донный слив	Акватехника	AT. 04.02.ML	1 шт
Слив переливного лотка	Аквасектор	AC. 02.150.L	12 шт
Форсунка гидромассажа	Аквасектор	AC. 06.500.L	24 шт
Гейзер	Аквасектор	AC. 04.501.L	1 шт
Водопад	Акватехника	AT. 01.12.M	1 шт
Противоток	Аквасектор	AC. 03.075.L	1 шт
Водозабор	Акватехника	AT. 06.03.M	4 шт
Прожектор	Акватехника	AT. 16.06.M	5 шт
Освещение ступеней	Бассейновая Автоматика	БА. 12.90.N	9 шт
Форсунка водного пылесоса	Акватехника	AT. 08.15.M	1 шт
Заглушка форсунки водного	Акватехника	AT. 08.12.M	1 шт
пылесоса			
Форсунка подключения	Акватехника	AT. 08.02.M	4 шт
пьезокнопки			
Пьезокнопка	Акватехника	AT. 13.16.M	4шт

2.4 Электромонтаж

<u> </u>	
PSH MINI-150T	1.1 кВт
PSH MINI-150T	1.1 кВт
EMEC VCLg	0.016 кВт
EMEC WDPHCL	0.032 кВт
PSH MICRO-25	0.2 кВт
Filtreau UVS0003	0.12 кВт
NEW CONTRA-4T (Гидромассажное место №1)	3.0 кВт

Изм	Кол.у	Лист	Подп.	Дата

3.0 кВт
3.0 кВт
3,0 кВт
4,0 кВт
0.85
0,12 кВт
0.81 кВт
2 кВт
22.5ĸBт/380B

3. Требования к помещениям водоподготовки

3.1. Общие указания

- 1. Рабочее и аварийное освещение следует принимать согласно СП 52.13330.2011 "Свод правил. Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95*".
- 2. Пол в помещениях водоподготовки должен быть выполнен с применением гидроизоляции (желательна облицовка кафелем). Ударные нагрузки на пол отсутствуют.
- 3. Окраска стен должна быть выполнена в светлых тонах (желательна облицовка кафелем). Краска должна быть водостойкая.
 - 4. У входа в помещения водоподготовки должно быть световое табло "Водоподготовка".
- 5. Для прохода технологических трубопроводов через стены должны быть устроены металлические или пластмассовые гильзы, обеспечивающие зазор 10-20мм, между трубопроводом и гильзой.
- 6. Для заноса оборудования в помещения водоподготовки предусмотреть монтажные (демонтажные) проёмы:
 - для помещений системы водоподготовки не менее 2000 мм шириной и 2000мм высотой;
 - 7. В помещениях водоподготовки предусмотреть дренажный приямок.

3.2 Раздел ЭОМ

- 1. В зоне проведения работ по монтажу оборудования бассейнов в помещениях водоподготовки должно быть обеспечено временное электропитание 220В/50Гц для подключения используемого электроинструмента.
- 2. В зоне проведения работ по монтажу оборудования бассейнов в помещениях водоподготовки должно быть обеспечено освещение.
 - 3. Провести контур заземления по всему периметру помещений водоподготовки.
- 4. Качество электрической энергии должно соответствовать ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения».
- 5. К шкафу управления электрооборудованием бассейнов подвести медный силовой кабель. Сечение кабеля определяется Заказчиком исходя из выданной установочной мощности технологического оборудования согласно требованиям ПУЭ, но не менее 5х6 мм².

Установочная мощность оборудования составляет 22.5 кВт (без учета, дренажных насосов в приямках).

6. Шкаф управления системами водоподготовки устанавливается в помещении водоподготовки.

3.3. Раздел ВК

Система водоподготовки

1. В помещение должна быть заведена труба холодного водоснабжения для залива и долива воды в балансный резервуар. Вода в трубопроводе должна соответствовать параметрам СанПин 2.1.4.1074-01. Диаметр подводящего трубопровода должен быть не менее Ду32, давление в трубопроводе не должно превышать 6 бар. Максимальный объемный расход холодной воды составит 2,2 м³/час при заполнении чаши бассейна (согласно ТУ на подключение хол. водоснабжения). В процессе эксплуатации бассейна в обычном режиме общий объемный расход

Изм	Кол.у	Лист	Подп.	Дата

холодной воды на подпитку составит $2,63 \text{ м}^3/\text{сут}$ (с учетом воды, необходимой для промывки фильтров).

- 2. На трубопроводе холодного водоснабжения для залива и долива воды в балансный резервуар установить отсечную арматуру.
- 3. Предусмотреть отвод воды в ливневую или хоз. бытовую канализацию для опорожнения ванны бассейна (проектирует и выполняет Заказчик, граница ответственности проектировщика системы водоподготовки запорная арматура Ду63) с обязательной установкой обратного клапана. Максимальный объемный расход воды, отводимой в канализацию при опорожнении чаши бассейна составляет не менее 18м³/ч.
- 4. Предусмотреть отвод воды в хоз. бытовую канализацию с донного слива и переливных лотков при мытье чаши бассейна (проектирует и выполняет Заказчик) с обязательным устройством разрыва струи или установкой обратного клапана. Фактический расход при мытье чаши определяется интенсивностью и длительностью помывки чаши и является эмпирической величиной.
- 9. Предусмотреть отвод воды из приямков в хоз.бытовую или ливневую канализацию. Вода отводится при помощи дренажных насосов.

3.4. Раздел ОВ

1. Подвести трубопроводы подвода и отвода теплоносителя из теплового пункта к теплообменникам.

Зима П +90°C / О +70°C

Лето П +75°C / О +45°C

Максимальная суммарная мощность при первичном нагреве:

- для системы водоподготовки 84 кВт.
- 2. Диаметры подводящих трубопроводов должны быть не менее Ду50 (для системы водоподготовки).
- 3. На трубопроводы подвода и отвода теплоносителя к теплообменникам установить отсечную арматуру.
- 4. В помещении водоподготовки (насосно-фильтровальной) предусмотреть систему вентиляции, кратность воздухообмена приток не менее 2 объемов в час, вытяжка не менее 3 (таб.29а СП 31.13330.2012). Категория взрывопожарной опасности помещения Д (НПБ 105-03, табл.1).
- 5. Температура в помещениях водоподготовки должна быть в переделах от +15 до +25 °C. Относительная влажность воздуха не более 60% при t=+25°C.

4. Требования к помещению хранения реагентов

- 1. Предусмотреть складское помещение для хранения хим.реагентов. Рекомендуется хранить месячный запас реагентов: коагулянт, дезинфицирующий раствор, рН-корректор. Все реагенты поставляются в готовом виде в герметично закрытых канистрах. В качестве хим. реагентов используются: жидкий флокулянт на основе гидрохлорида алюминия; кислотный раствор гидросульфит натрия для снижения рН; дез. раствор гипохлорита натрия (содержание активного хлора ок. 10-12%).
- 2. Над помещениями хранения реагентов не допускается размещать санитарные узлы и душевые.
- 3. Рабочее и аварийное освещение следует принимать согласно СП 52.13330.2011 "Свод правил. Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95*".
- 4. Расчетная температура воздуха 10°С, кратность воздухообмена 2 объема в час. Вентиляционное оборудование помещений хранения должны относиться к электроприемникам категории II.
 - 5. Категория помещения хранения реагентов Д.
- 6. Канистры с реагентами следует размещать на полу склада не более 100 бутылей по два ряда с проходом в 1 м. Можно устанавливать канистры в 2-ярусных стеллажах. Второй ярус должен проходить на высоте не более 1 м от пола.
- 7. Тип стеллажа (полочный, клеточный, ячеистый, консольный и др.) должен определяться количеством хранимого материала, его размерами и техническими условиями хранения.

Изм	Кол.у	Лист	Подп.	Дата

- 8. Складируемые канистры должны укладываться так, чтобы исключалась возможность их падения, опрокидывания, разваливания и обеспечивалась доступность и безопасность их выемки. Канистры с реагентами следует размещать крышками вверх.
 - 9. Во избежание опрокидывания запрещается загружать двусторонние только с одной стороны.
- 10. Между стеллажами, стеллажами и оборудованием или стеной здания должны быть разрывы не менее 1м.
 - 11. Переливать реагенты из канистр в расходную тару на складе запрещается.
- 12. При отсутствии отдельных помещений допускается совместное хранение дез. раствора с рН-корректором, на на различных стеллажах.
- 13. В складских помещениях должны быть вывешены таблички с указанием максимальной допускаемой нагрузки на единицу площади пола или стеллажа, а также грузоподъемности применяемых подъемно-транспортировочных средств.
- 14. На полах складских помещений должны быть нанесены масляной краской линии разметки, определяющие продольные и поперечные проходу и проезды между штабелями или стеллажами, и словами название хранимого на них груза.

5. Охрана труда и техника безопасности

При монтаже установок водоподготовки следует руководствоваться требованиями СП 48.13330.2011 «Организация строительства».

- "Правила устройства электроустановок";
- "Правила эксплуатации электроустановок потребителей";
- "Правила техники безопасности при эксплуатации электроустановок потребителей";
- "Межотраслевые правила охраны труда (правила безопасности при эксплуатации электроустановок)";
- ГОСТ 12.3.006-75 "ССБТ. Эксплуатация водопроводных и канализационных сооружений и сетей, общие требования безопасности";
- "Правила техники безопасности и эксплуатации систем водоснабжения и водоподготовки населённых мест" отраслевой стандарт Министерства жилищно-коммунального хозяйства;
 - СНиП 12-03-2001 «Безопасность труда в строительстве. Часть 1. Общие требования»
 - Справочник по технике безопасности и промышленной санитарии. Профиздат;
 - Захаров Л.Н. Техника безопасности в химических лабораториях. Л: Химия.

При выполнении электромонтажных работ необходимо также соблюдать требования СП 76.13330.2011 «Электротехнические устройства».

При работе с электроинструментом необходимо соблюдать требования ГОСТ12.2.007.0-75* «Изделия электротехнические. Общие требования безопасности».

При эксплуатации установок водоподготовки необходимо руководствоваться инструкцией по эксплуатации, техническими описаниями и паспортами оборудования, входящего в состав установки, "Правилами технической эксплуатации электроустановок потребителей" и "Правилами техники безопасности при эксплуатации электроустановок потребителей(ПТЭ и ПТБ).

К обслуживанию установок водоподготовки допускаются лица, прошедшие вводный инструктаж по технике безопасности и инструктаж на рабочем месте безопасным методам труда.

Все ремонтные и регламентные работы с электрооборудованием производить только после отключения электропитания. Должно быть проверено наличие рабочего и защитного заземления (зануления). Ремонтные работы производить при отсутствии давления в ремонтируемом участке или узле.

6. Требования к готовности строительной площадки к монтажу системы водоподготовки

Наименование работ, выполненных заказчиком перед началом работ исполнителя.

Изм	Кол.у	Лист	Подп.	Дата	

6.1. Требования к готовности технического помещения для систем водоподготовки бассейнов.

Помещение водоподготовки должно быть отделено от других помещений противопожарными перегородками и перекрытиями.

В чаше бассейна должны быть предусмотренны все необходимые технологические отверстия под закладные детали согласно строительному заданию.

Температура в помещении водоподготовки должна быть от $+15^{\circ}$ до $+25^{\circ}$ С. Относительная влажность воздуха не более 60% при $t=+25^{\circ}$ С.

Обеспечено освещение на месте проведения монтажных работ (250-300 люкс).

Пол в помещении водоподготовки должен быть выполнен с применением гидроизоляции (желательна облицовка кафелем). Ударные нагрузки на пол отсутствуют.

Подвести медный силовой кабель к шкафу управления оборудованием, под установочную мощность (55,89 кВт), но не менее 5×16мм.

Провести контур заземления, по периметру помещения водоподготовки.

Подвести трубопроводы подвода и отвода горячей воды (+70°C и +35°C) к теплообменникам. Точки подключения и диаметры труб указаны на листе 10 в графической части настоящего раздела. Для прохода технологических трубопроводов через стены должны быть устроены металлические или пластмассовые гильзы, обеспечивающие зазор 10-20 мм, между трубопроводом и гильзой.

В помещение должна быть заведена труба с холодной водой для залива и долива воды в балансный резервуар. Вода в трубопроводе должна соответствовать параметрам СанПиН 2.1.4.1074-01.

В зоне проведения работ по монтажу оборудования бассейна в техническом помещении, должно быть обеспечено временное электропитание 220В/50Гц, для подключения используемого электроинструмента.

Предусмотреть отвод воды из приямка.

Приемка помещения водоподготовки для монтажа оборудования выполняется представителями ЗАКАЗЧИКА и ИСПОЛНИТЕЛЯ.

Оборудование должно храниться в отапливаемом, сухом, закрывающемся помещении.

В помещении водоподготовки (насосно-фильтровальной) предусмотреть систему вентиляции, кратность воздухообмена: приток не менее 2 объемов в час, вытяжка не менее 3 (таб.29а, СП 31.13330.2012). Категория помещения Д.

6.2 Требования к готовности объекта к пусконаладочным работам бассейна и системы водоподготовки.

Обеспечено освещение на месте проведения пуско-наладочных работ (250-300 люкс).

Завершены все строительно-монтажные работы в помещении чаши бассейна и помещении водоподготовки.

Готовность узла подачи исходной воды (физическое подключение к трубопроводам, юридическое оформление документов, позволяющих забор воды).

Готовность канализации (стоки с установки водоочистки, стоки с пола помещения чаши бассейна, согласно проекту).

Готовность электроснабжения установки водоочистки (бесперебойное электропитание шкафа управления 380±19 В, 50±0,2 Гц, сечение силового кабеля согласно проекту).

Строительная готовность помещений, прилегающих к чаше бассейна (устранение возможности попадания пыли и грязи в чашу бассейна, ограничение доступа в чашу бассейна).

Строительная готовность помещения чаши бассейна и помещения водоподготовки бассейна (завершение всех отделочных работ, уборка помещений от пыли и грязи).

Готовность контура заземления в помещении водоочистки (для заземления электрооборудования и металлоконструкций), заземление чаши бассейна.

Обеспечены производственные (строительная бытовка) и санитарно-бытовые помещения (туалет) для монтажников в рабочее время.

Предоставлено складское помещение для хранения материалов и инструментов.

Указание Исполнителю должностного лица Заказчика, полностью ответственного за строительный проект и имеющего право подписи.

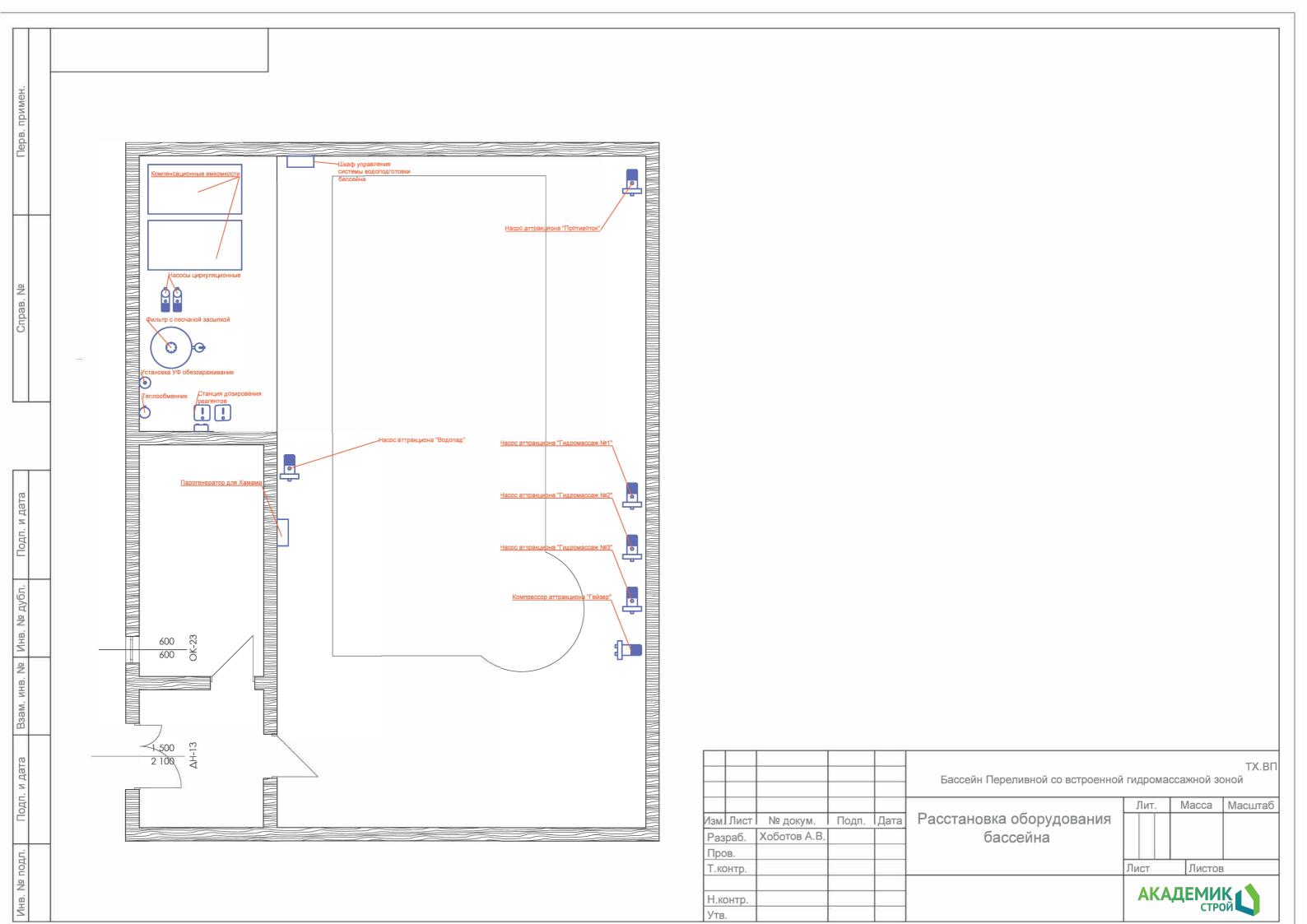
Готовность инженерно-технического персонала Заказчика, либо службы эксплуатации к прохождению обучения по эксплуатации системы водоподготовки.

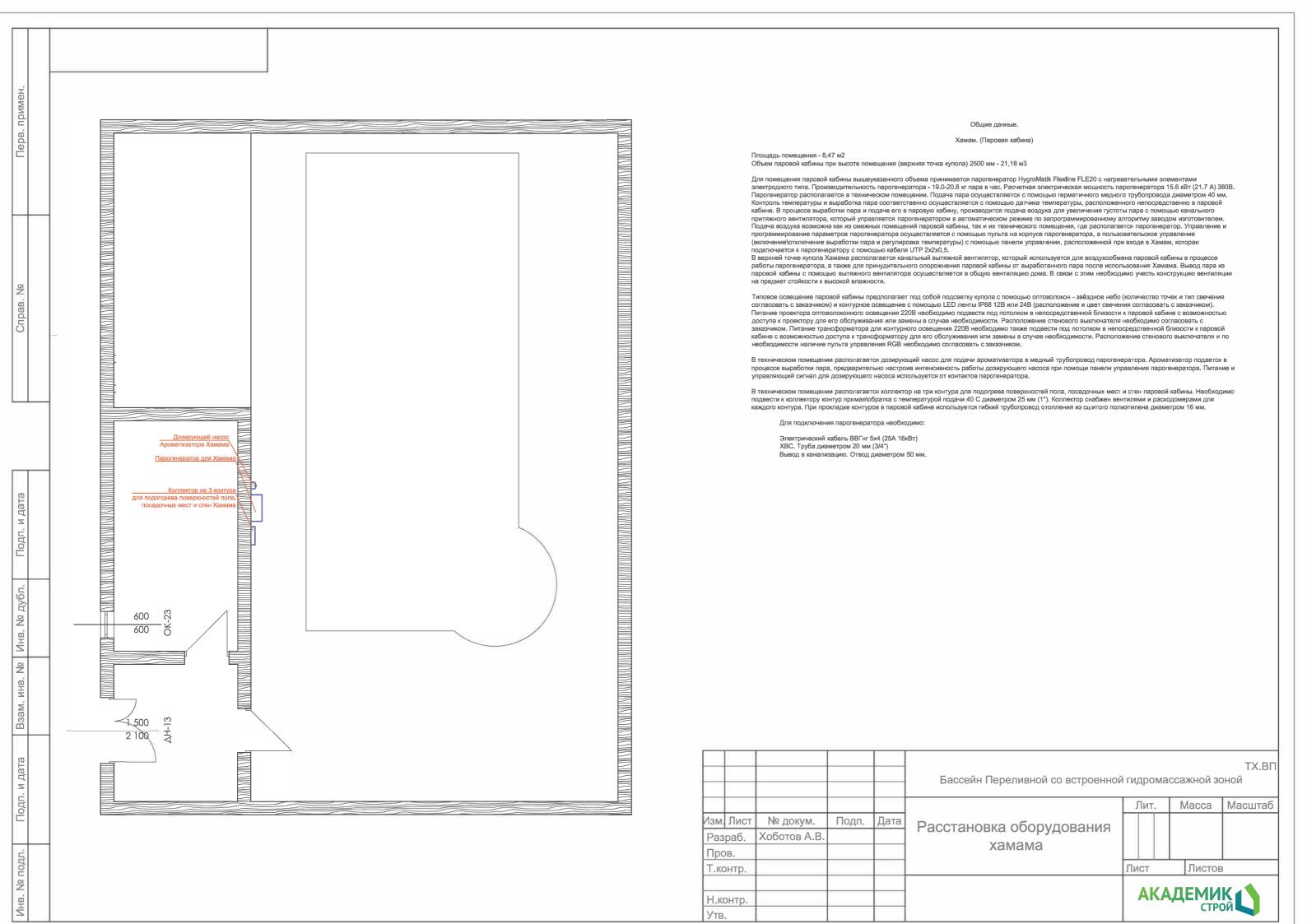
Изм	Кол.у	Лист	Подп.	Дата

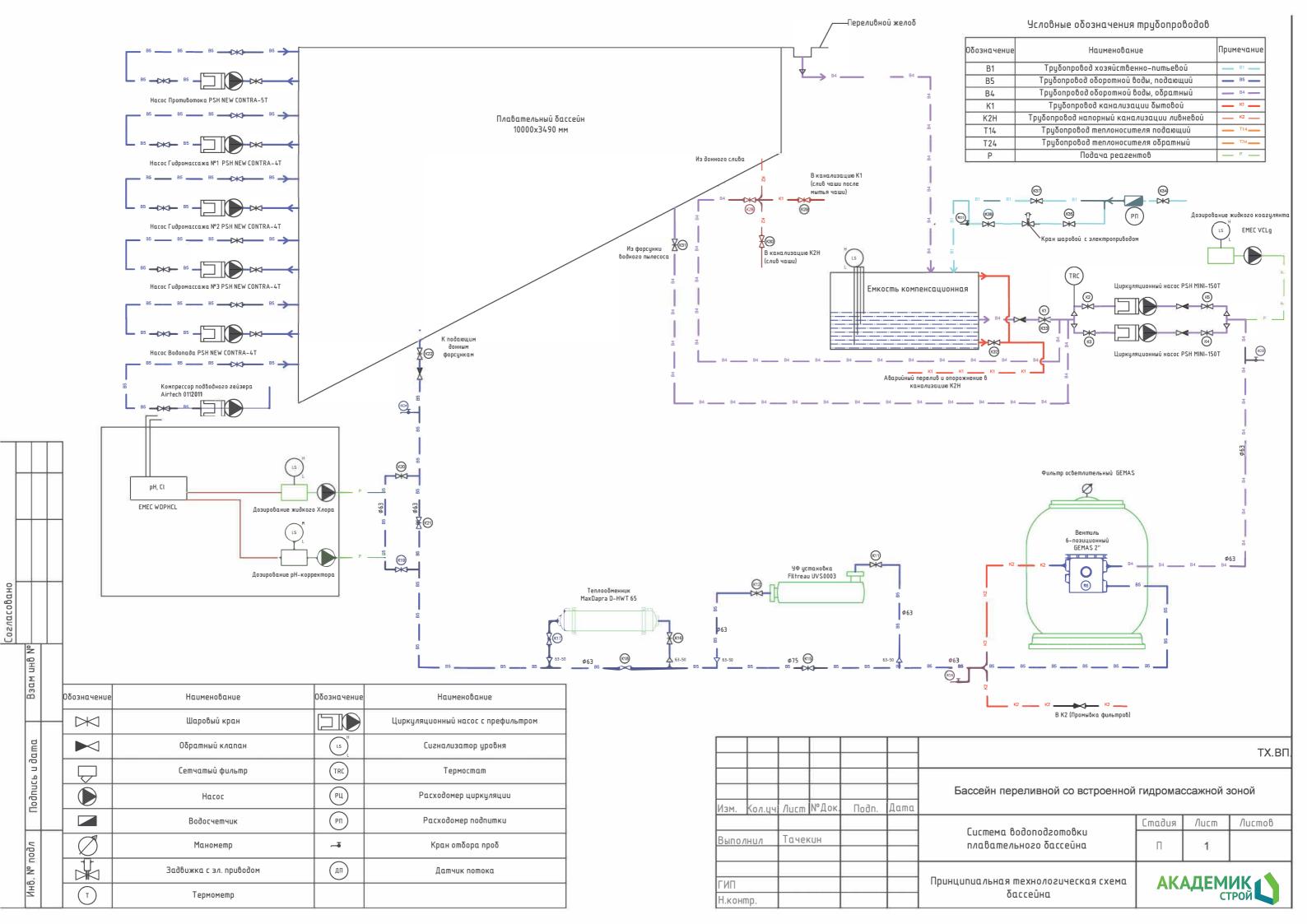
Подключена труба с холодной водой для залива и долива воды в компенсационную емкость. Вода в трубопроводе должна соответствовать параметрам СанПиН 2.1.4.1074-01.

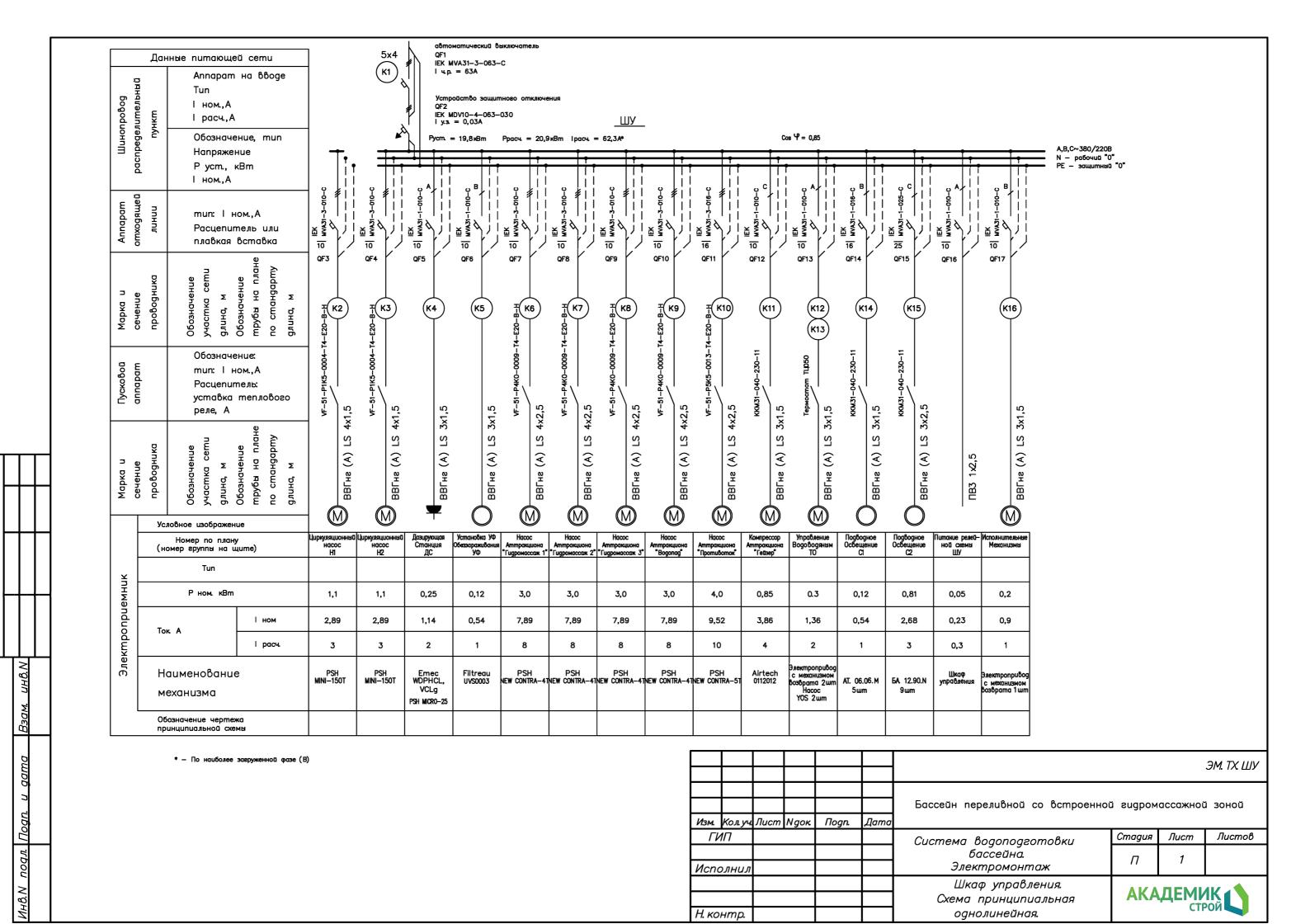
Готовность трубопровода подачи теплоносителя (подключение теплоносителя +70°C - +35°C к теплообменникам).

Готовность вентиляционной системы объекта (согласно проекту).


Отсутствие задолженностей за поставленное оборудование и выполненные монтажные работы.


Ограничение доступа посторонних лиц при проведении пуско-наладочных работ.


Готовность Заказчика принять объект во временную эксплуатацию и все расходы по обслуживанию бассейна взять на себя.


Изм	Кол.у	Лист	Подп.	Дата	

иши коП я	Наименование и техническая характеристика.	Тип, марка, обозначение документа, опросного листа	Код оборудования, изделия, материала	Завод-изготовитель	Единица змерения	Коли- чество	Масса еди- ницы, кг	п Приме чание
1	2	3	4	5	6	7	8	9
	Блок фильтрации	7			7			
1	Фильтр Ø920		021815LLT	GEMAS	шт.	1		
2	Шестипозиционный вентиль	ſ′	02213027T	GEMAS	шт.	11		
3	Засыпка фракция 0,5-1,0 мм (25 кг)	· · · · · · · · · · · · · · · · · · ·	SAND0508	Россия	шт.	18		
	Насос дозирования коагулянта		VCLg	EMEC	шт.	1	/	
5	Клапан впрыска реагента	7	073.1062.1	EMEC	шт.	1		
6	Клапан забора реагента с датчиком уровня и фильтром	/	076.0147.1	EMEC	шт.	1		
7	Трубка подачи реагента 2 м 4х6 мм	/	PVDF	EMEC	шт.	1	/	
8	Трубка забора реагента 2 м 4х6 мм	1	PVC	EMEC	шт.	1		
9	Циркуляционный самовсасывающий насос с префильтром 18 м3/ч	1	MINI-150T	PSH	шт.	2	1	
10	Датчик потока	1	ДР-П-03-15	OBEH	шт.	1	/	
	Система компенсационного резервуара	1					1	
11	Емкость компенсационного резервуара 2 м3		Т2000ФК23	Анион	шт.	3	/	
12	Отвод из бака в сборе 2" ПП		220079B	Анион	шт.	10	,	
13	Кран шаровый с электроприводом 1"		MS-251-25	Россия	шт.	1		
14	Регулятор уровня жидкости		БКК1	OBEH	шт.	1		
15	Кондуктометрический датчик уровня	1	ДС.П G1/2	OBEH	шт.	5		
16	Стержень для кондуктометрического датчика уровня		Сталь нерж 12Х18Н10Т	OBEH	шт.	5	4′	
17	Фильтр магнигный сетчатый 1"	1	R74MY005	Giacomini	шт.	1		
	Система подогрева воды						<u> </u>	
18	Теплообменник 84 кВт		D-HWT 65	MaxDapra	шт.	1		
19	Муфта ПВХ-Латунь 50 x 1 1/2"	1	RGRBNG050F	Pahlen	шт.	2		
	Кран шаровой с электроприводом и возвратным механизмом	/	MS-251-25	Россия	шт.	1	1	
1	Кран шаровый 1" НР	<u> </u>		Россия	шт.	2	<u> </u>	
	Фильтр магнигный сетчатый 1"	4	R74MY005	Giacomini	шт.	2	4′	
23	Термостат цифровой	<u> </u>	ТЦ050	Россия	шт.	1		
24	Датчик температуры погружной	4	ДТС335-РТ100.В3.60	OBEH	шт.	1	4	
	Гильза для датчика температуры	<u> </u>	ГЗ.16.3.1.60	OBEH	шт.	1		
	Термометр биметаллический осевой G1/2	<u> </u>	ДК63 120C L=40 ТБ63	Метер	шт.	4	4	
27	Манометр G1/4 0-10 бар	<u> </u>	ДМ02-63-1	Метер	шт.	2	<u></u>	
	Система обеззараживания и химической подготовки воды	<u> </u>			<u> </u>		4——	1
28	Ультрафиолетовая установка 120W		UVS0003	Filtreau	шт.	1	4	
			Изм. Кол.цч Лист №Док. Подп. Выполнил ГИП Н.контр.	Система водопо плавательного	го бассейна	Стадия	/lucm ДЕМИН СТРО	/lucmo8

Согласовано

Позици я	Наименование и техническая характеристика.	Тип, марка, обозначение документа, опросного листа	Код оборудования, изделия, материала	Завод-изготовитель	Единица змерения	Коли- чество	Масса еди- ницы, кг	Примо
1	2	3	4	5	6	7	8	9
29	Автоматическая станция дозирования реагентов Ph / Cl		WDPHCL	EMEC	шт.	1		
	Фильтр тонкой очистки		NFIL	EMEC	шт.	1		
31	Открытый амперометрический датчик		ECL6	EMEC	шт.	1		
	Датчик		EPHM	EMEC	шт.	1		
33	Клапан впрыска реагента		073.1062.1	EMEC	шт.	2		
	Клапан забора реагенга с датчиком уровня и фильтром		076.0147.1	EMEC	шт.	2		
	Трубка подачи реагента 2 м 4х6 мм		PVDF	EMEC	шт.	2	1	
	Трубка забора реагента 2 м 4х6 мм		PVC	EMEC	шт.	2	1	
	Жидкость буферная (тарирующая) 650 mV		10800221	EMEC	шт.	1		
	Жидкость буферная (тарирующая) рН 7		10800211	EMEC	шт.	1	<u> </u>	
1	Жидкость буферная (тарирующая) рН 4	<u> </u>	10800201	EMEC	шт.	1	1	
	Насос забора/возврата воды на датчики		MICRO-25	PSH	шт.	1		
	Жидкий хлор новая формула	:	ЭМОВЕКС	МаркоПул Кемиклз	ШТ.	1	<u> </u>	
			ЭКВИ-минус	МаркоПул Кемиклз		1		
-	Жидкое средство регулировки Ph		· · · · · · · · · · · · · · · · · · ·	<u> </u>	шт.	1	1	
43	Жидкий коагулянг		ЭКВИТАЛЛ	МаркоПул Кемиклз	шт.	1	+	-
11	Оснащение чаши бассейна, закладные детали		A C 07 021 //			12	-	
	Форсунка донная рассеивающая из нержавеющей стали		AC 07.031/L	Аквасектор	ШТ.	12	1	
	Донный слив антивихревой из нержавеющей стали		AT 04.02.ML	Акватехника	ШТ.	12	-	
	Слив переливного лотка		AC. 02.150.L	Аквасектор	ШТ.	12	-	
	Форсунка гидромассажа Мини		AC. 06.500.L	Аквасектор	ШТ	24	-	
	Гейзер донный 500 x 500 мм		AC. 04.501.L	Акватехника	шт.	1	-	
	Водопад Ниагара 500 мм		AT 01.12.M	Акватехника	шт.	1	1	
	Противоток с регуляторами потока и воздуха 75 м3/ч		AC. 03.075.L	Аквасектор	шт.	1	1	
r	Водозабор ангивихревой D=250 мм	,	AT 06.03.M	Акватехника	шт.	4		
52	Прожектор подводный		AT 16.06.M	Акватехника	шт.	5		
53	Светильник подводный точечный		БА.12.90.N	Бассейновая автоматика	шт.	9	1	
54	Трансформатор понижающий 12В 300 Вт		PS-0722	IML	шт.	1		
55	Трансформатор понижающий 12B 130 Bт		PS-0721	IML	шт.	1		
56	Форсунка водного пылесоса		AT 08.04.M	Акватехника	шт.	1		
57	Заглушка форсунки водного пылесоса		AT 08.12.M	Акватехника	шт.	1		
58	Форсунка подключения пьезокнопки		AT 08.15.M	Акватехника	шт.	4		
59	Пьезокнопка (сенсорная)		AT 13.16.M	Акватехника	шт.	4		
60	Щетка-насадка для пылесоса			IML	шт.	1		
61	Штанга телескопическая для пылесоса			IML	шт.	1		
62	Шланг для пылесоса			IML	шт.	1		
	Решетка переливного лотка 195 мм				М.	35		
	Угловой элемент решетки переливного лотка 195 мм 90°				шт.	3		
	Угловой элемент решетки переливного лотка 195 мм 45°				шт.	2		
	Опорный профиль для решетки переливного лотка	ì			M.	70		
	1 1 1 1 1	- t			,			/lucm
4				I AK	САДЕМИК СТРОЙ			

Позици я	Наименование и техническая характеристика.	Тип, марка, обозначение документа, опросного листа	Код оборудования, изделия, материала	Завод-изготовитель	Единица змерения	Коли- чество	Масса еди- ницы, кг	Приме чание
1	2	3	4	5	6	7	8	9
	Оборудование аттракционов							
67	Насос аттракциона "Гидромассаж"		NEW CONTRA-4T	PSH	шт.	3		
68	Насос аттракциона "Водопад"		NEW CONTRA-4T	PSH	шт.	1		
69	Насос аттракциона "Противотк"		NEW CONTRA-5T	PSH	шт.	1		
70	Компрессор аттракциона "Гейзер"		0112012	Airtech	шт.	1		
71	Перепускной клапан для компрессора G1 1/4"		0501227	HPE	шт.	1		
72	Глушитель для компрессора G1 1/2"		0501338	HPE	шт.	1		
73	Фильтр воздушный для компрессора G1 1/2"		0501349	HPE	шт.	2		
74	Частотный преобразователь 4 кВт		VF-51-P4K0-0009-T4-E20-B-H 3X380B	VEDA	шт.	4		
75	Частотный преобразователь 5 кВт		VF-51-P5K5-0013-T4-E20-B-H 3X380B	VEDA	шт.	1		
	Трубы, фитинг, крепление, различные материалы, вспомогательное оборудование, контрольно-измерительная					-		
76	Комплект труб из НПВХ	2		Lareter	шт.	1		
77	Комплект фигингов из НПВХ			Coraplax	шт.	1		
78	Комплект запорной арматуры из НПВХ			Coraplax	шт.	1		
79	Клей для ПВХ труб (1л)			СН	шт.	10		
80	Обезжириватель для ПВХ труб (1л)			Cosmofen	шт.	5		
81	Кран отбора проб				шт.	4		
82	ë							
83	Шкаф силовой-автоматический			IEK	шт.	1		
	TC C		ВВГнг(А) 3×1,5	Россия	M.	300		
84	Кабель силовой		() ')'	т оссти	1121	300		
	Кабель силовой		ВВГнг(А) 3×2,5	Россия	M.	50		
84	Кабель силовой Кабель силовой		1		1	50 100		
84 85	Кабель силовой		ВВГнг(A) 3×2,5	Россия	M.	50		
84 85 86	Кабель силовой Кабель силовой		ВВГнг(А) 3×2,5 ВВГнг(А) 4×1,5	Россия Россия	M. M.	50 100		
84 85 86 87	Кабель силовой Кабель силовой Кабель силовой		BBΓHΓ(A) 3×2,5 BBΓHΓ(A) 4×1,5 BBΓHΓ(A) 4×2,5	Россия Россия Россия	М. М. М.	50 100 100		
84 85 86 87 88	Кабель силовой Кабель силовой Кабель силовой Кабель силовой		BBΓHΓ(A) 3×2,5 BBΓHΓ(A) 4×1,5 BBΓHΓ(A) 4×2,5	Россия Россия Россия Россия	M. M. M.	50 100 100 30		
84 85 86 87 88 89	Кабель силовой Кабель силовой Кабель силовой Кабель силовой Труба гофрированная 25мм ПВХ		BBΓHΓ(A) 3×2,5 BBΓHΓ(A) 4×1,5 BBΓHΓ(A) 4×2,5	Россия Россия Россия Россия Россия Россия	M. M. M. M.	50 100 100 30 600		

Согласовано

Взам инв №

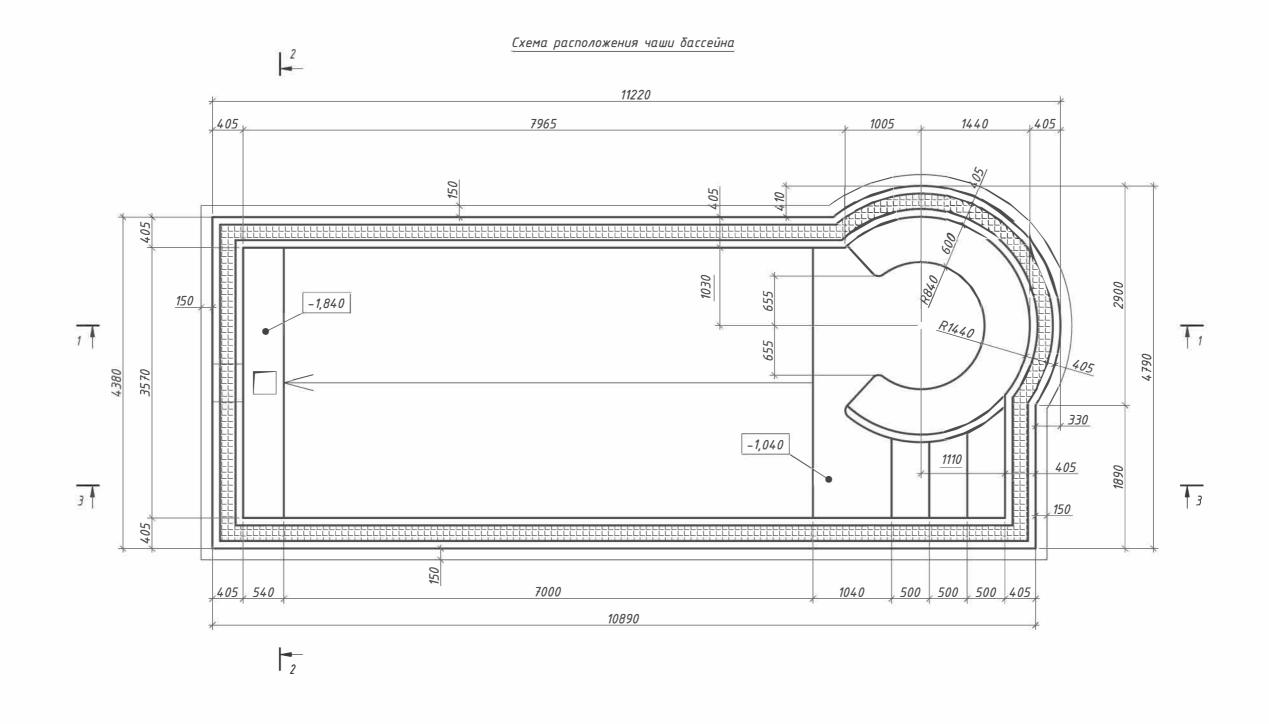
Инв. № подл Подпись и дата

Изм. Кол.уч. Лист № док. Подп. Дата

/lucm

ВЕДОМОСТЬ ОСНОВНЫХ КОМПЛЕКТОВ РАБОЧИХ ЧЕРТЕЖЕЙ КЖ

Оδозначение	Наименование	Примечание
KX	КОНСТРУКЦИИ ЖЕЛЕЗОБЕТОННЫЕ ЧАШИ БАССЕЙНА	

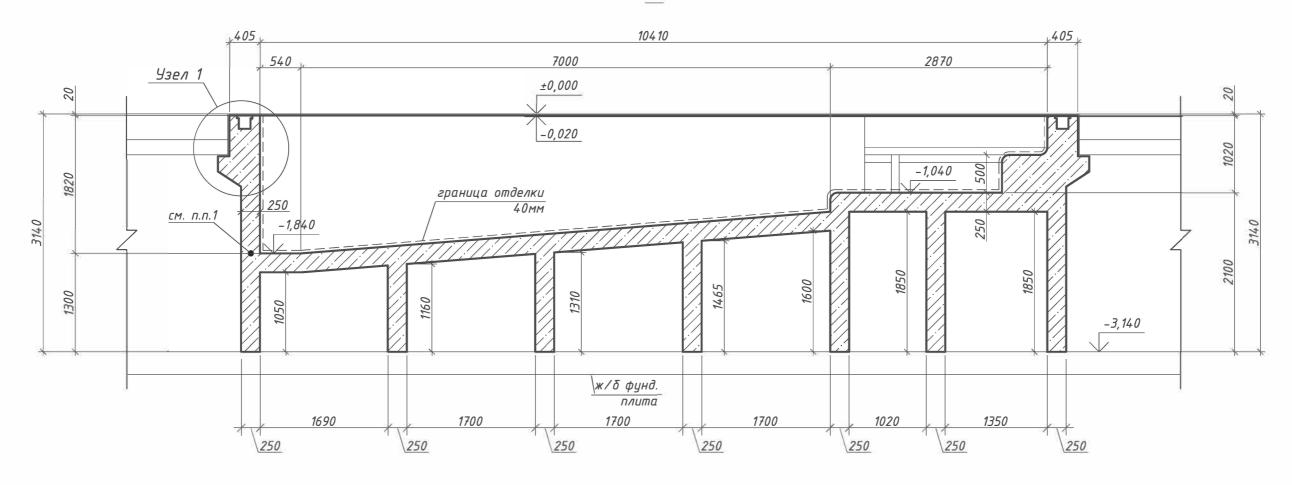

ВЕДОМОСТЬ РАБОЧИХ ЧЕРТЕЖЕЙ ОСНОВНОГО КОМПЛЕКТА

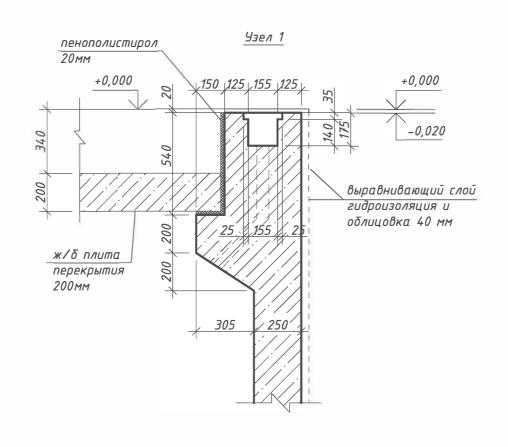
Лист	Наименование	Примечание
1	Общие данные.	
2	Схема расположения чаши бассейна	-
3	Разрез 1–1. Узел 1.	
4	Разрезы 2-2, 3-3.	
5	Схема армирования поддерживающих стен бассейна. Разрез а-а.	
6	Разрез 1–1. Армирование поддерживающих стен.	
7	Спецификация на поддерживающие стены чаши бассейна. Ведомость элементов	
8	Схема армирования днища бассейна. Разрез а-а.	
9	Схема армирования стен бассейна	
10	Разрез 1–1. Армирование.	
11	Разрез 3–3. Армирование.	
12	Разрез 2-2. Армирование. Узел 1 армирование.	
13	Спецификация на чашу бассейна. Ведомость элементов.	
14	Схема расположения закладных отверстий в чаше бассейна	
15	Разрезы 1–1, 3–3 к схеме расположения закладных отверстий в чаше бассейна.	
16	Разрезы 2–2, 4–4 к схеме расположения закладных отверстий в чаше бассейна.	

- 1. Данный проект выполнен на основании задания Заказчика.
- 2. Чашу бассейна выполнять из бетона кл. B25,0 по прочности на сжатие, марки F100 по морозостойкости и марки W8 по водонепроницаемости.
- 3. Во всех швах бетонирования проложить гидрошнур.
- 4. Армирование чаши бассейна выполняется отдельными стержнями. Все пересечения стержней должны быть связаны вязальной проволокой.
- 5. При установке стержней в опалубку обеспечить толщину защитного слоя. Указанный на чертеже защитный слой наименьшее расстояние от грани бетона до ближайшего к ней арматурного стержня.

Работы по армированию и бетонированию чаши бассейна проводить совместно и в соответствии со схемой установки трубопроводов. Схему установки трубопроводов см. раздел "ТХ".

						<i>-KЖ</i>					
						Чаша бассейна					
Изм.	Кол.уч	Лист	№Док	Подп.	Дата				*		
							Стадия	Лист	Листов		
Разр	αδ.				07.2023	Конструкции железобетонные	P 1 16		16		
									<u> </u>		
ГИП	ГИП		7				Общие данные	АКАДЕМИК СТРОЙ			
Н.кон	mp.						СТРОЙ		РОИ		

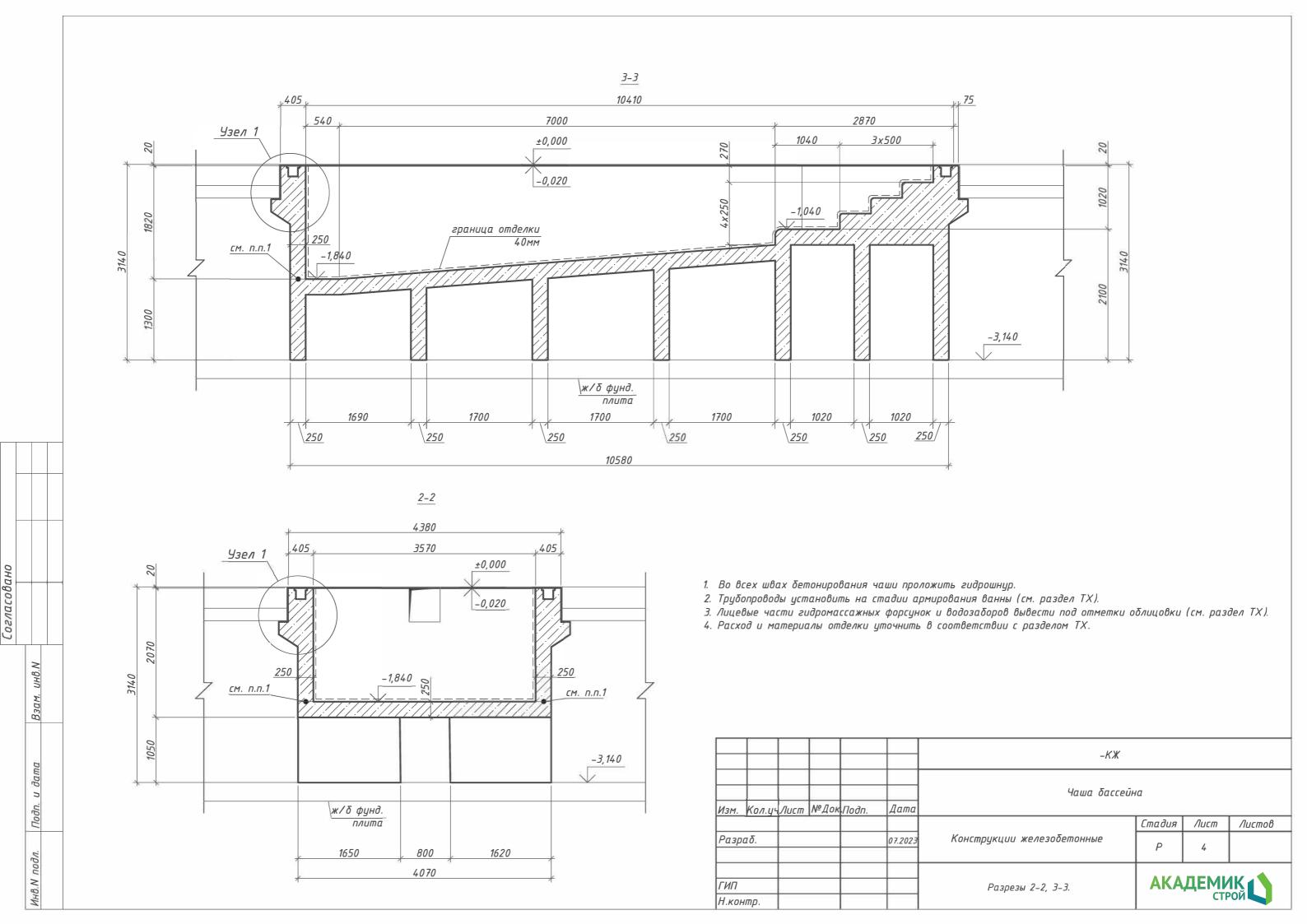

1. Во всех швах бетонирования чаши проложить гидрошнур.

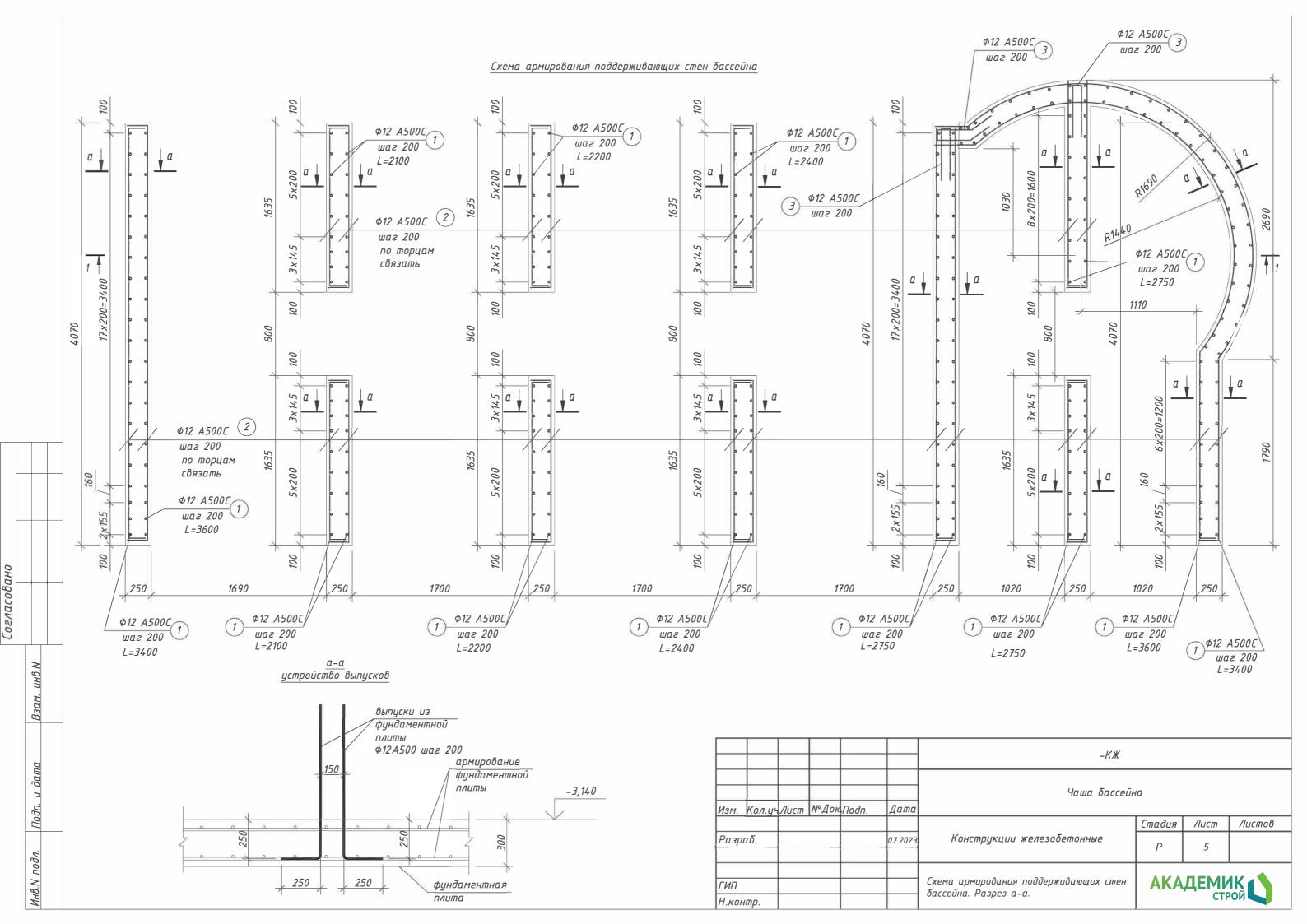

Взам. инв.N

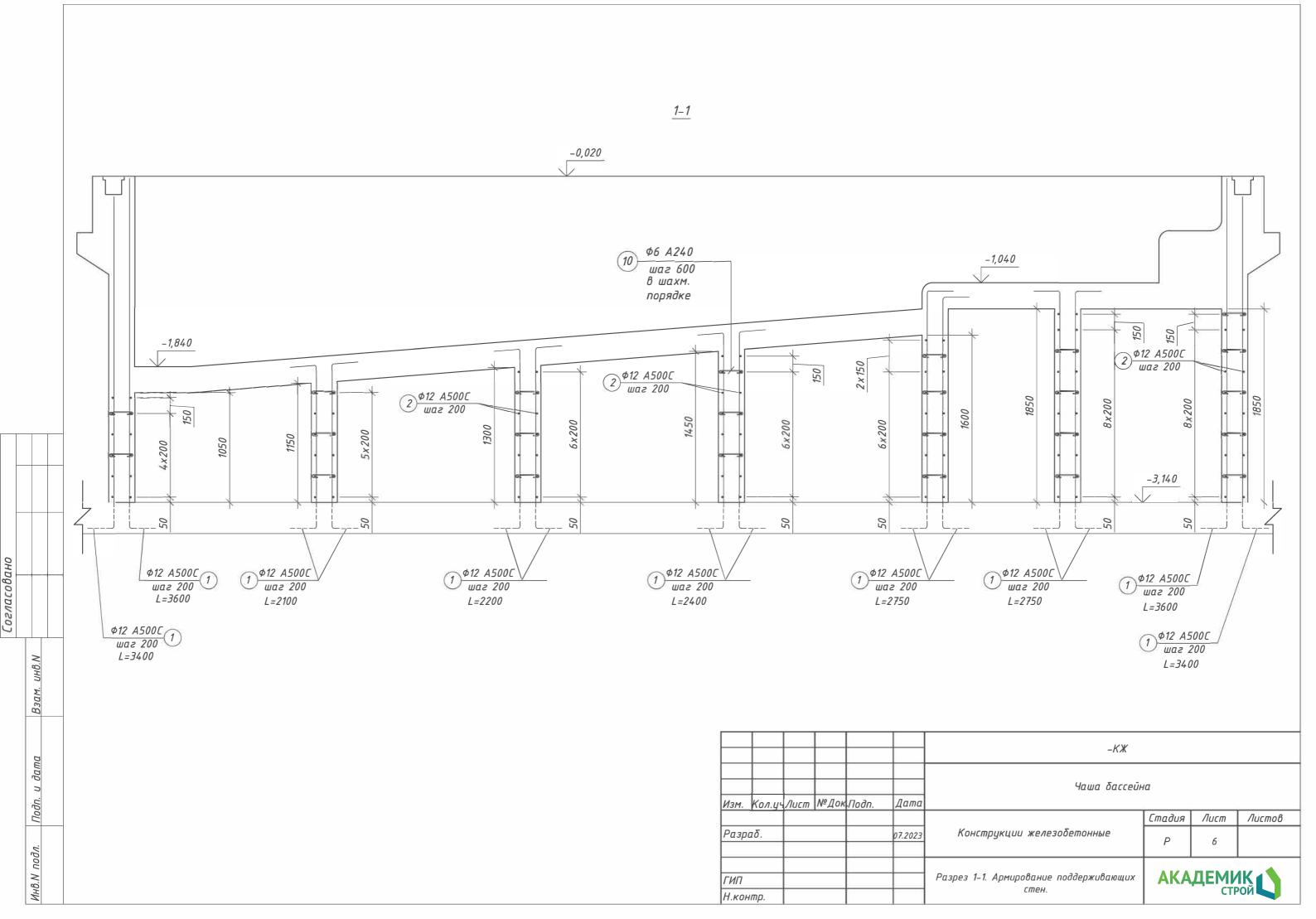
Инв.N подл.

- 2. Трубопроводы установить на стадии армирования ванны (см. раздел ТХ).
- 3. Лицевые части гидромассажных форсунок и водозаборов вывести под отметки облицовки (см. раздел ТХ). 4. Расход и материалы отделки уточнить в соответствии с разделом ТХ.

						-K X					
			A/0 /7			Чаша бассейн	Ια				
Изм	Кол.уч	/lucm	№Док	lodn.	Дата		Стадия	Лист	Листов		
Разро	ιδ.				07.2023	Конструкции железобетонные	Р	2			
ГИП Н.кон	mn					Схема расположения чаши бассейна	AKA	ДЕМИ СТР	IK (


Взам. инв.N


Подп. и дата


Инв. И подл.

- 1. Во всех швах бетонирования чаши проложить гидрошнур. 2. Трубопроводы установить на стадии армирования ванны (см. раздел ТХ).
- 3. Лицевые части гидромассажных форсунок и водозаборов вывести под отметки облицовки (см. раздел ТХ). 4. Расход и материалы отделки уточнить в соответствии с разделом ТХ.

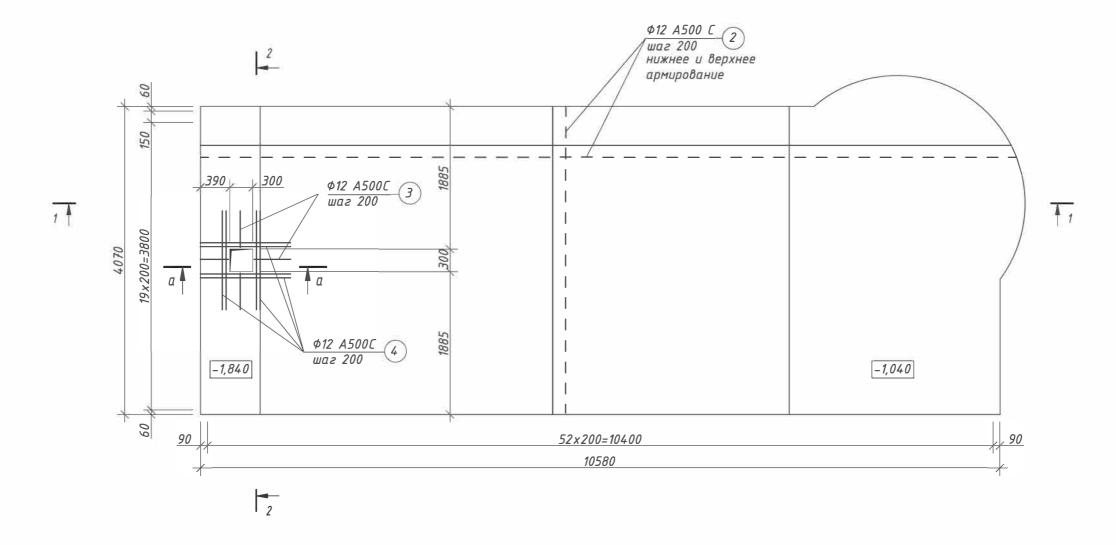
						-КЖ				
						Чаша бассейн	10			
	_						ıu			
Изм.	Кол.уч	Лист	№Док	Подп.	Дата					
							Стадия	Лист	Листов	
Разро	1δ.				07.2023	Конструкции железобетонные	P	3		
ГИП						Разрез 1–1. Узел 1.	AKA	АКАДЕМИК СТРОЙ		
Н.кон	тр.							CIP	ОИ	

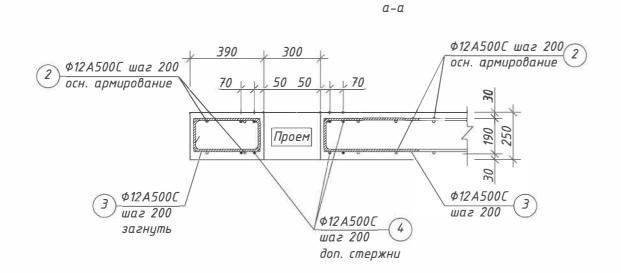
ВЕДОМОСТЬ ЭЛЕМЕНТОВ

Поз.	Эскиз
3	180
10	50 50 ——————————————————————————————————

ВЕДОМОСТЬ РАСХОДА СТАЛИ НА ЖЕЛЕЗОБЕТОННЫЕ ЭМЕНТЫ, КГ

	A2	40				
Марка элемента	ГОСТ 5	781-82	ГОСТ	P 52544		
	Ø6	Итого		Ø12	Итого	
Поддерживающие стены чаши бассейна	15,0	15,0		1304,8	1304,8	
Итого:	15,0	15,0		1304,8	1304,8	1319,8

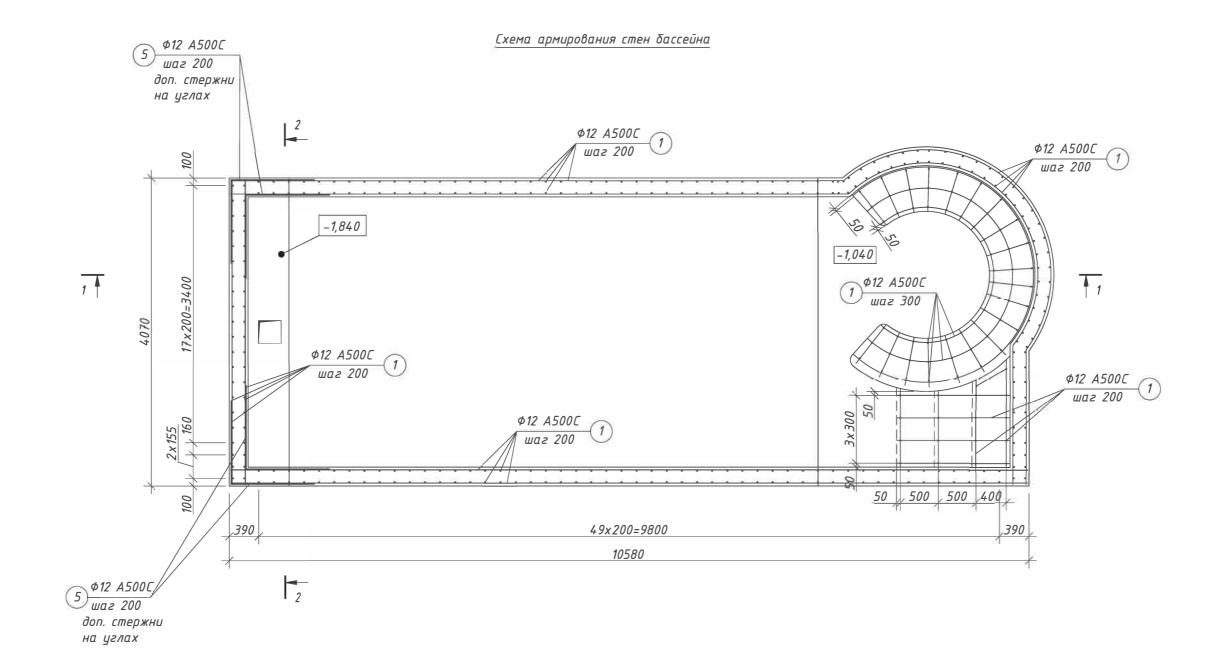

Инв. N подл.


СПЕЦИФИКАЦИЯ НА ПОДДЕРЖИВАЮЩИЕ СТЕНЫ

Марка	Обозначение	Наимено	Кол.	Масса ед.,кг.	Общ., кг.	
		Сборочные	элементы:			
1	ΓΟCT P 52544 - 2006	Ф12 A500C	L= 3600	58	3,20	185,6
1	ΓΟCT P 52544 - 2006	Ф12 A500C	L= 3400	58	3,02	175,2
1	ΓΟCT P 52544 - 2006	Ф12 A500C	L= 2100	36	1,86	67,0
1	ΓΟCT P 52544 - 2006	Ф12 A500C	L= 2200	36	1,95	70,2
1	ΓΟCT P 52544 - 2006	Ф12 A500C	L= 2400	36	2,13	76,7
1	ΓΟCT P 52544 - 2006	Ф12 A500C	L= 2750	78	2,44	190,3
2	ΓΟCT P 52544 - 2006	Ф12 A500C	L= 4350	48	3,86	185,3
2	ΓΟCT P 52544 - 2006	Ф12 A500C	L= 1900	124	1,69	209,6
2	ΓΟCT P 52544 - 2006	Ф12 A500C	L= 7100	20	6,30	126,0
3	ΓΟCT P 52544 - 2006	Ф12 A500C	L= 1180	18	1,05	18,9
10	ΓΟCT 5781-85	Ф6 А240	L= 290	250	0,06	15,0

						<i>-KЖ</i>				
Mari	Vasuu	7	No Tok	П- 3-	Дата	Чаша бассейн	Чаша бассейна			
ИЗМ.	Кол.уч	JIUCM	IV-ДОК	1100n.	диши		Стадия	Лист	Листов	
Разраб.					07.2023	Конструкции железобетонные	P	7		
ГИП Н.кон	IMD.					Спецификация на поддерживающие стены чаши бассейна. Ведомость элементов.	AKA	ДЕМИ	1K (

Схема армирования днища бассейна


Взам. инв.N

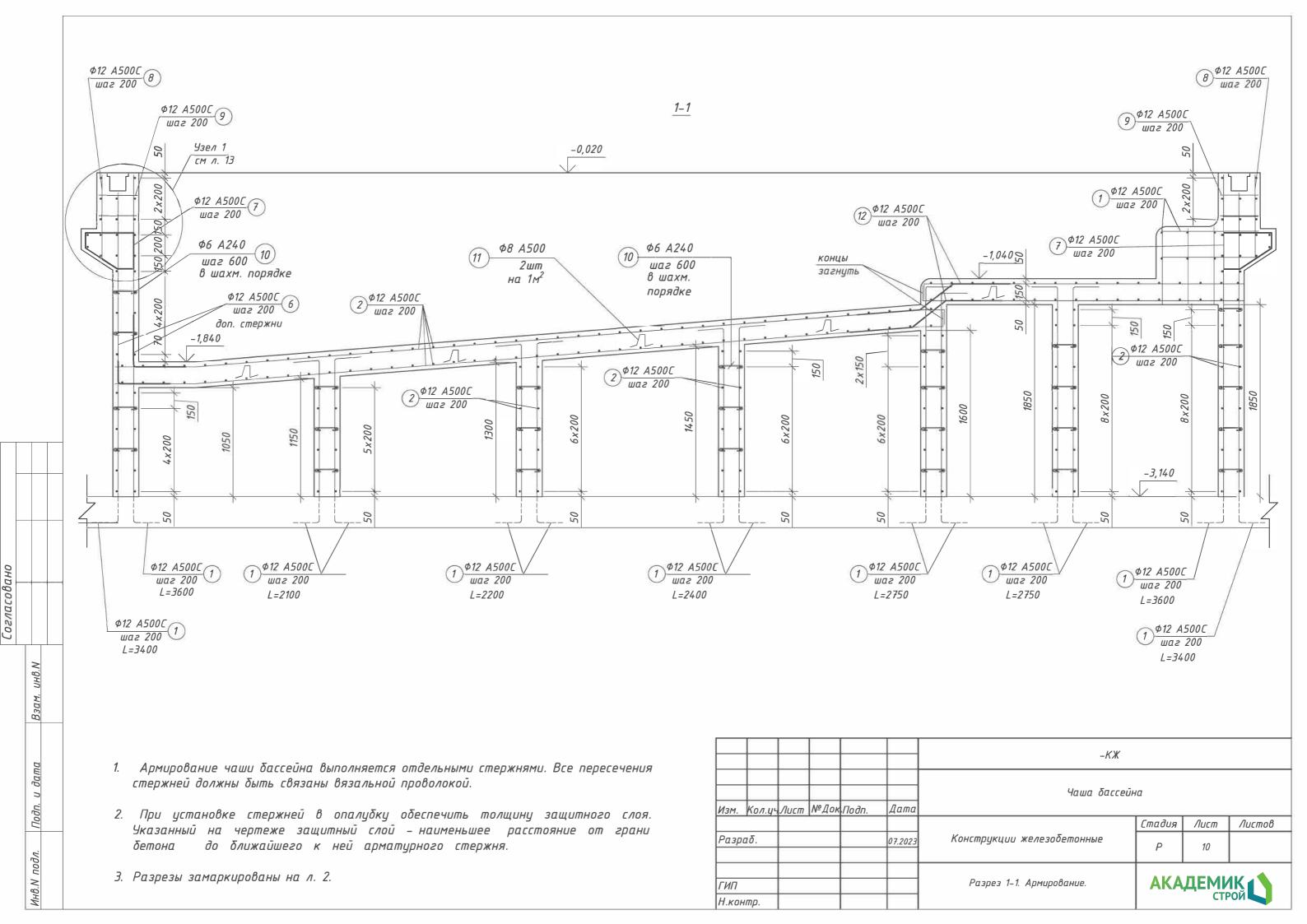
Подп. и дата

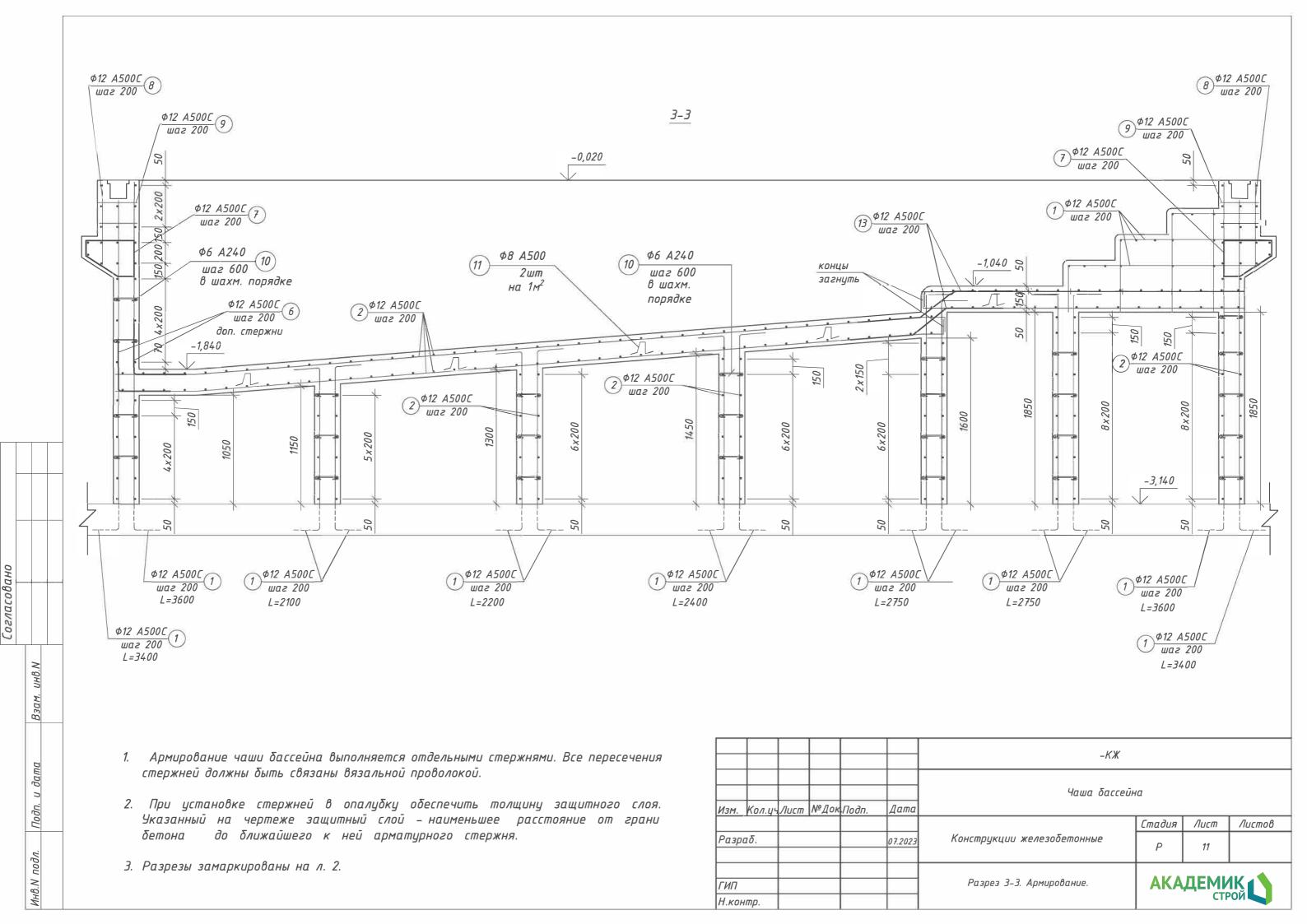
Инв.N подл.

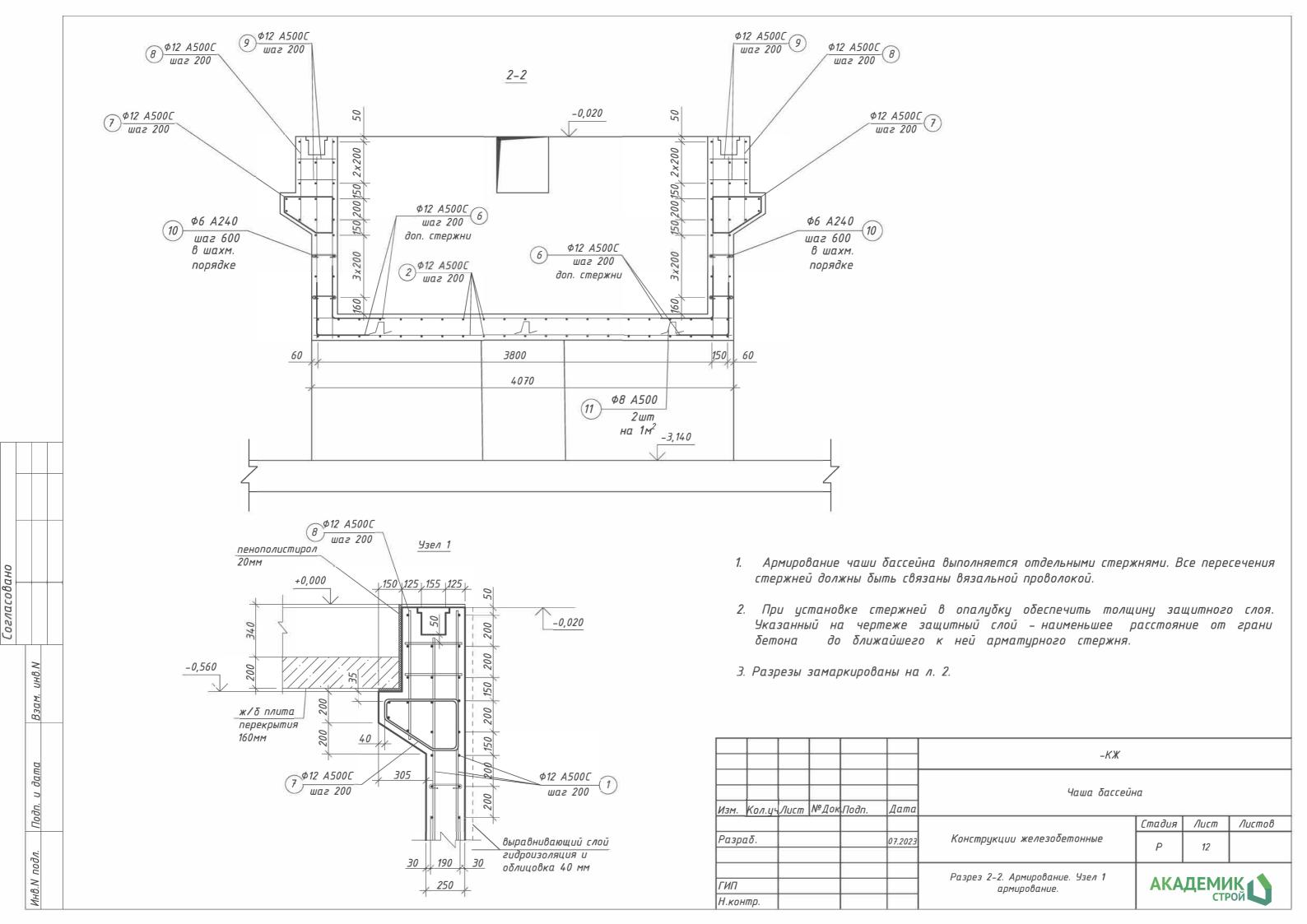
- 1. Армирование чаши бассейна выполняется отдельными стержнями. Все пересечения стержней должны быть связаны вязальной проволокой.
- 2. При установке стержней в опалубку обеспечить толщину защитного слоя. Указанный на чертеже защитный слой – наименьшее расстояние от грани бетона до ближайшего к ней арматурного стержня.

						-K X				
Изм.	Кол.уч	Лист	№Док	Подп.	Дата	Чаша бассейна				
	-						Стадия	Лист	Λυςποβ	
Разр	Разраб.		07.202		07.2023	Конструкции железобетонные	Р	8		
ГИП Н.кон	нтр.					Схема армирования днища бассейна. Разрез a-a.	AKA	ДЕМИ	КОЙ	

1. Армирование чаши бассейна выполняется отдельными стержнями. Все пересечения стержней должны быть связаны вязальной проволокой.


Взам. инв.N


Подп. и дата


Инв.N подл.

2. При установке стержней в опалубку обеспечить толщину защитного слоя. Указанный на чертеже защитный слой – наименьшее расстояние от грани бетона до ближайшего к ней арматурного стержня.

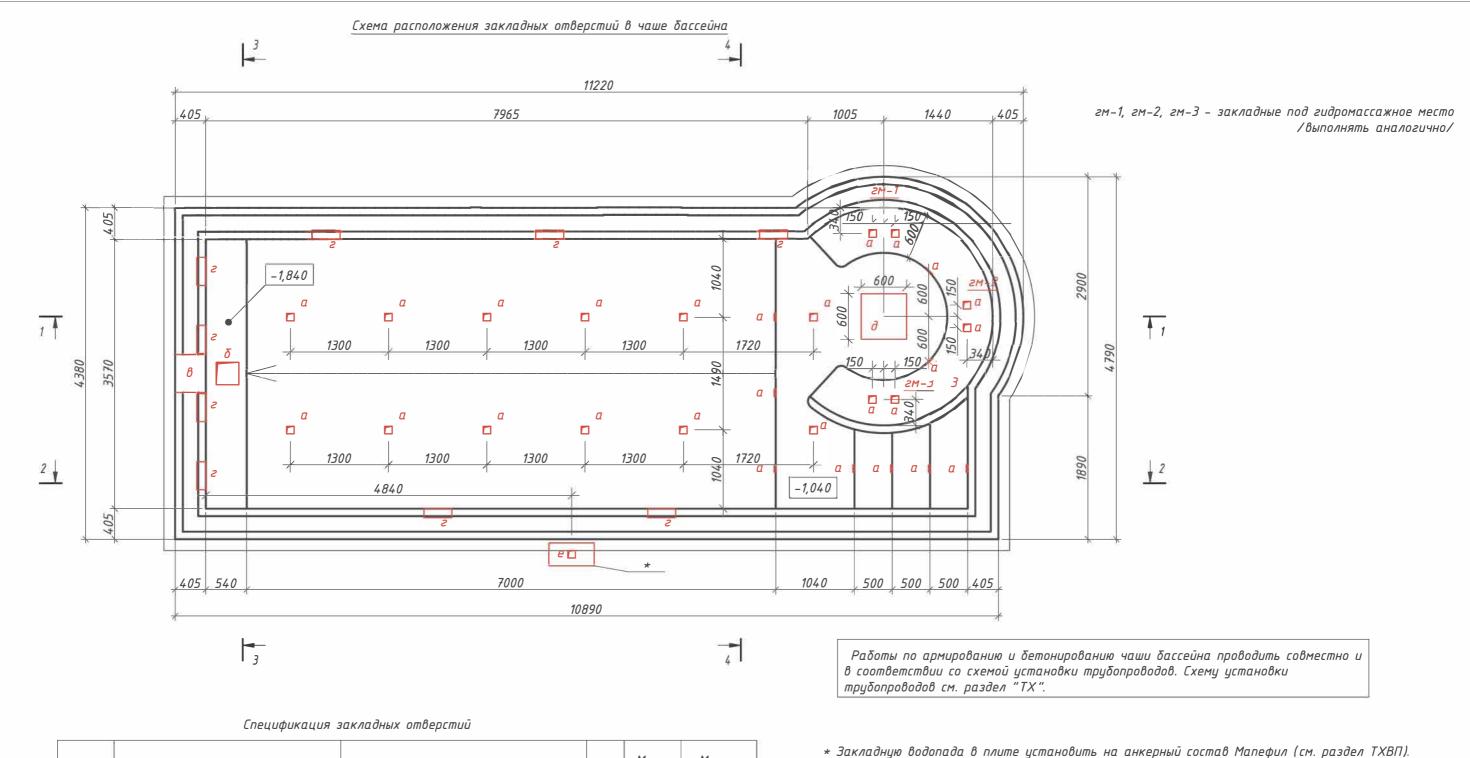
						-K X					
Изм.	Кол.уч	Лист	№Док	Подп.	Дата	Чаша бассейна					
							Стадия	Лист	Листов		
Разр	Разраб.				07.2023	Конструкции железобетонные	Р	9			
ГИП Н.кон	ГИП Н.контр.						Схема армирования стен бассейна	АКАДЕМИК СТРОЙ			

ВЕДОМОСТЬ ЭЛЕМЕНТОВ

Поз.	Эскиз
3	180
5	1100 <u>1100</u>
6	500 500
7	100 465 330 140 170 350
10	50 50 ——————————————————————————————————
11	250 190 250
12	600 600

СПЕЦИФИКАЦИЯ НА ЧАШУ БАССЕЙНА

Марка	Обозначение	Наимено	Кол.	Масса ед.,кг.	Общ., кг.	
		Сборочные	элементы:			
1	ГОСТ Р 52544 - 2006	Ф12 A500C	L= 910п.м.	-	-	808,1
2	ГОСТ Р 52544 - 2006	Ф12 A500C	L= 880п.м.	-	-	781,4
3	ГОСТ Р 52544 - 2006	Ф12 A500C	L= 1190	4	1,06	4,2
4	ΓΟCT P 52544 - 2006	Φ12 A500C	L= 1300	16	1,15	18,4
5	ΓΟCT P 52544 - 2006	Ф12 A500C	L= 2200	38	1,95	74,1
6	ГОСТ Р 52544 - 2006	Ф12 A500C	L= 1000	208	0,89	185,1
7	ГОСТ Р 52544 - 2006	Ф12 A500C	L= 1700	150	1,51	226,5
8	ГОСТ Р 52544 - 2006	Ф12 A500C	L= 640	150	0,57	85,5
9	ΓΟCT P 52544 - 2006	Ф12 A500C	L= 365	300	0,32	96,0
10	ΓΟCT 5781-85	Ф6 А240	L= 290	150	0,06	9,0
11	ΓΟCT P 52544 - 2006	Ф8 А500С	L= 1130	90	0,45	40,5
12	ΓΟCT P 52544 - 2006	Ф12 A500C	L= 1600	42	1,42	59,6
		Матери				
		Бетон класса	B25,0	39,0	M ³	
		Гидрошнур		30,0	М	
		Пенополистирол	t=20 мм	21,3	м2	


ВЕДОМОСТЬ РАСХОДА СТАЛИ НА ЖЕЛЕЗОБЕТОННЫЕ ЭМЕНТЫ, КГ

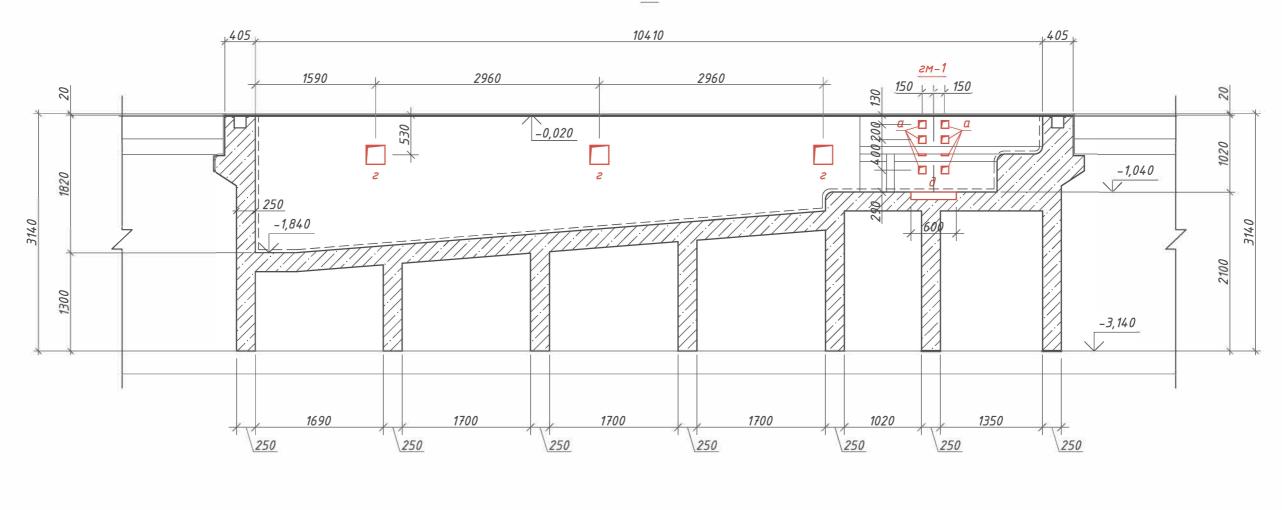
Взам. инв.N

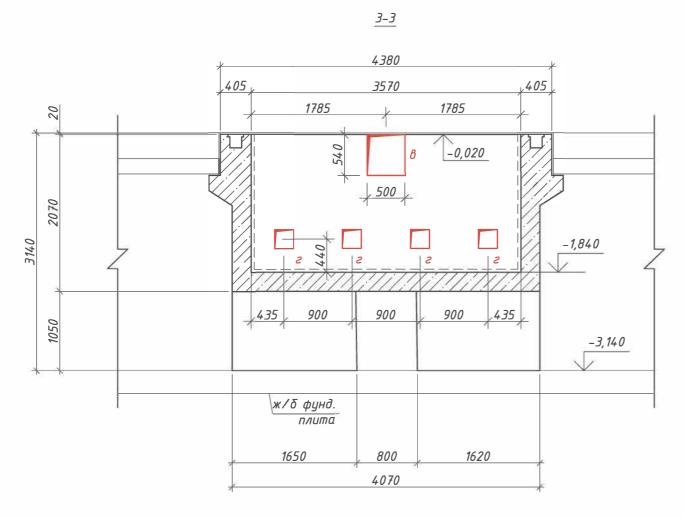
Инв. N подл.

	A24	40		A500C		
Марка элемента	ГОСТ 5	781-82	ГОСТ			
	Ø6	Итого	Ø8	Ø12	Итого	
Чаша бассейна (кроме поддерживающих стен)	20,4	20,4	65,4	2540	2605,4	
Итого:	20,4	20,4	65,4	2540,0	2605,4	2625,8

						<i>-KЖ</i>					
Изм	Кол.уч	Aucm	№Док	Подп	Дата	Чаша бассейна					
VI314.	NON. Y	JIULIII	и док	110011.	дата		Стадия	Лист	Листов		
Разри	Разраб.		αδ.			07.2023	Конструкции железобетонные	Р	13		
ГИП Н.кон	IMD.					Спецификация на чашу бассейна. Ведомость элементов.	АКАДЕМИК СТРОЙ		IK (

Марка	Оδозначение	Наименование	Кол.	Масса ед., кг	Масса общ., кг	
а	См. схему	Отв. 100х100 сквозное	45			
δ	См. схему	Отв. 300х300 сквозное	1			
в	См. схему	Отв. 540х500 сквозное	1			
2	См. схему	Ниша 250x250/h/, глубина 120	9			
д	См. схему	Ниша 600х600/h/, глубина 100	1			
е	См. схему	Ниша 300x600, глубина 250 * от отм. 0,000	1			

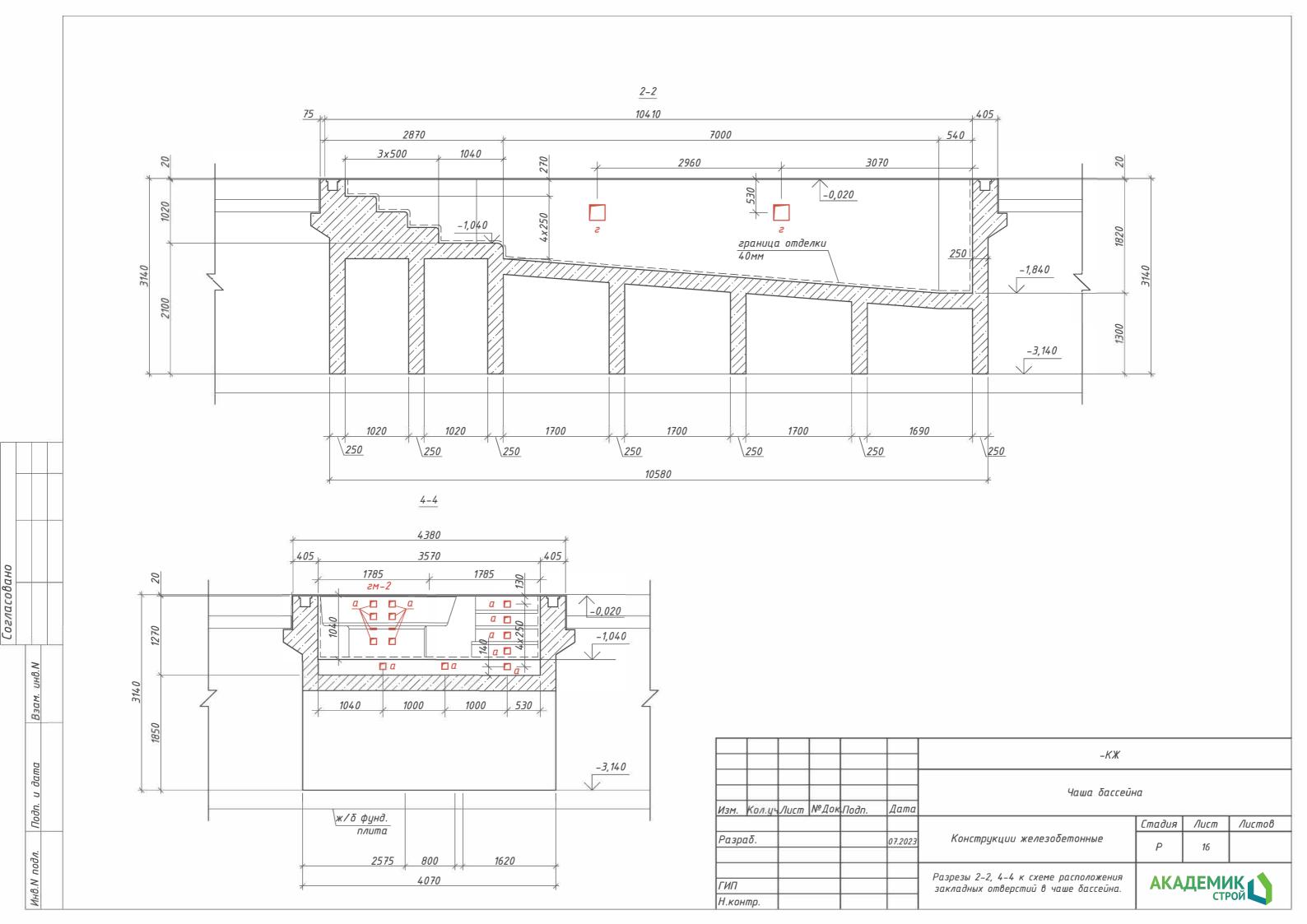

Взам. инв.N


Подп. и дата

Инв. И подл.

- Размеры уточнить по месту.
- 1. После заливки чаши закладные элементы установить на анкерный состав Мапефил или аналог, (см. раздел ТХВП)
- 2. Разрезы с расположением закладных отверстий 1-1...4-4 см. листы 15, 16.

						-K X					
	W	7	NO TOU	<i>n</i> - 2-	Дата	Чаша бассейна					
VI3M.	Кол.уч	JIULIII	N-HOK	110011.	диши		Стадия	Лист	Листов		
Разр	Разраб.				07.2023	Конструкции железобетонные	Р	14			
ГИП	ГИП Н.контр.					Схема расположения закладных отверстий в чаше бассейна		АКАДЕМИК СТРОЙ			


Согласовано

Взам. инв.N

Подп. и дата

Инв. И подл.

						-K X			
						Чаша бассейн	НΩ		
Изм.	Кол.уч	Лист	№Док	Подп.	Дата		Стадия	Лист	Листов
Разр	Разраб.				07.2023	Конструкции железобетонные	Р	1 5	
ГИП Н.кон	нтр.					Разрезы 1-1, 3-3 к схеме расположения закладных отверстий в чаше бассейна.	AKA	ДЕМ И	1K (

